Masters’ Tips & Tricks

LAWRENCE G. LENKE, MD
The Jerome J. Gilden Distinguished Professor of Orthopaedic Surgery
Professor of Neurological Surgery
Chief, Spinal Surgery
Co-Director, Spinal Deformity Service
Director, Advanced Deformity Fellowship (ADF)

Washington University Medical Center
Saint Louis, Missouri

8th International Congress on Early Onset Scoliosis and Growing Spine (ICEOS)
Warsaw, Poland
November 20-21, 2014

Masters’ Tips & Tricks
MASTER’S TECHNIQUES: VCR & GROWING RODS

I. INTRODUCTION/TERMINOLOGY
 a. SCHWAB – OSTEOTOMY TYPES
 ANATOMICAL CONSIDERATIONS

 Neurosurgery 2014;74(1):112–20

 b. Fox VCR Study Group Definition:
 “3-column circumferential vertebral osteotomy creating a segmental defect with
 sufficient instability to require provisional instrumentation
 c. Indications
 i. Pathology dependent
 1. Type of deformity (scoliosis, kyphosis, lordosis)
 2. Coronal/sagittal/combined imbalance
 3. Curve magnitude
 4. Stiffness (preop & intraop)
 5. Bone density (proxy for PS purchase)
 ii. Surgeon dependent
 1. Operative goals
 2. Surgeon experience/comfort level (PSOs, post. HV exc.,
 costotransversectomy approach)
 iii. Risk dependent
 1. Minimization
 2. Avoid complications
 3. Able to obtain enough correction w/o resorting to VCR
 d. Contraindications
 i. VCR → “stuck dura” dorsally and/or ventrally from prior
 decompression/post. interbody fusion
 ii. Unfamiliar w/technique
 iii. Lack of SCM (?) during procedure (↑ risk!)
 e. Preoperative planning
 i. Complete radiographic evaluation
 ii. Total spine MRI
 iii. 3D CT scan ± actual model
 iv. Pulmonary/nutrition analyses
 v. Cardiac/anesthesia clearance

Notes:
II. SPECIFIC INDICATIONS/TECHNIQUES

a. Posterior VCR
 i. Procedure of “last resort”
 ii. Severe & stiff deformities/autofused spinal columns
 iii. For primary IS → “spine-on-chest wall” x-rays
 iv. Marked kyphoscoliosis/lordoscoliosis
 v. Performed primarily in thoracic/TL region
 vi. Resection of all post. elements, facet joints ↑/↓, pedicles, nearly all vertebral body & discs ↑/↓
 vii. Tremendous correction ability as spine is disarticulated at apex & proximal/distal limbs slowly brought together
 viii. Performed via staged ant./post. approaches or post.-only (in single or staged fashion)

b. Surgical technique
 i. Exposure, costotransversectomy, pedicle screw placement
 ii. Laminectomy, temporary rod placement, vertebral body exposure
 iii. Lateral vertebral body access and removal, discectomies

Notes:
iv. Posterior vertebral body impaction, compression closure

v. Anterior cage insertion, final correction, placement of rib pieces over laminar defect

III. OUTCOMES
 i. Complications
 1. 86/147 (59%) total complications
 2. 68/147 (46%) intraop
 a. 39/147(26.5%) SCM loss or actual neuro deficit
 b. 33/147(22.4%) EBL >2L
 3. 43/147 = 29% postop
 a. 21/147(14.3%) respiratory
 b. 7/147 (4.8%) infections
 ii. No intraop/postop deaths
 iii. No permanent paraplegias: 1 pt. w/persistent neuro dysfunction
 i. Postop neuro status
 1. 138 pts./8yrs
 2. 112 with intraop SCM same as preop
 3. 4/26 without intraop SCM – (15%) transient paraplegia
 ii. Characteristics
 1. 3 KS & 1 AK – +116.3°

Notes:
2. Apex proximal to mid-thoracic – T2-7
3. 3 prior ASF w/segmental vessel ligation
4. All preop neuro status acute, progressive myelopathy

iii. F/U neuro status

<table>
<thead>
<tr>
<th>Age</th>
<th>VCR (mmHg)</th>
<th>Ds</th>
<th>Secondary Ds</th>
<th>Preop</th>
<th>Postop</th>
<th>F/U</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>T7A</td>
<td>HH</td>
<td>SED</td>
<td>M treaty</td>
<td>Paraplegia</td>
<td>Ambulatory</td>
</tr>
<tr>
<td>7.5</td>
<td>T6A</td>
<td>HH</td>
<td>Intraosseous</td>
<td>M treaty</td>
<td>Paraplegia</td>
<td>Ambulatory</td>
</tr>
<tr>
<td>7.5</td>
<td>T6A</td>
<td>HH</td>
<td>Cephalic</td>
<td>M treaty</td>
<td>Paraplegia</td>
<td>Ambulatory</td>
</tr>
<tr>
<td>7.5</td>
<td>T6A</td>
<td>HH</td>
<td>Cephalic</td>
<td>M treaty</td>
<td>Paraplegia</td>
<td>Ambulatory</td>
</tr>
</tbody>
</table>

All 4 pts. Regained LE motor function and 4/4 ambulatory

c. Benefit of SCM – multicenter pediatric VCR “Fox” Consortium
 i. Prompt response to SCM changes
 1. 147 pts./7 surgeons
 2. 39/147 (27%) critical change/SCM loss or failed WUT
 3. 19 pts. (13%) worsening neuro status immediate postop
 4. 1 permanent neuro decline

 i. Loss of SCM data
 1. 15/90 pts. either lost (n=13) or had degraded data meeting warning criteria (n=2)
 2. All 15 SCM data returned following prompt intervention
 3. All woke w/intact LE function! (“SCM SAVES”)

IV. COMBINE VCR WITH GROWING INSTRUMENTATION” IN EOS PATIENTS
 a. Unique situation – more angular deformity w/growth potential ↑/↓ resected area
 b. Use of preop HGTx – very beneficial & may often obviate actually performing VCR procedure
 c. Growing instr. can consist of growing rod or Shilla-type construct
 d. Risk/benefits ratio of VCR with definitive fusion vs. VCR & long fusion w/growth instr.
 e. Need to question viability of spine growth w/3 fusion areas
 i. Proximal anchors
 ii. Apical VCR fusion
 iii. Distal anchors
 f. Goal is either GR construct alone w/apical correction from HG Tx or apical VCR w/short segmental fusion
 i. HGTx highly beneficial in both scenarios
 ii. Need for additional surg. w/growth in most short – segment apical fusion in EOS a patient population

Notes:
Bibliography

