Genetic Considerations in Early-Onset Scoliosis

Kim M. Keppler-Noreuil, MD
Professor of Pediatrics, Division of Genetics and Metabolism
Rare Disease Institute, Children’s National Medical Center
George Washington University School of Medicine
Washington, D.C.
Early-Onset Scoliosis (EOS)

- Curvature of the spine in children $>10^\circ$ with onset before age 10 yrs
- Often progressive
- Often associated with thoracic constraint and impaired pulmonary development
- Associated impaired pulmonary function
- **Multiple possible underlying causes, which may have other associated anomalies** → *Genetic Syndromes*
 - Treatment is complicated by these numerous factors
Clinical Genetics Evaluation of EOS

• Isolated VS Multiple
• **Multiple**
 • Major organ system anomalies
 • Minor anomalies – dysmorphic features
 • Patterns of multiple anomalies
 • Family history
 • Genetic & environmental causes
 • Genetic testing
Early-Onset Scoliosis

Genetic causes:
- Single gene variants
- Chromosome
 - Somatic
 - Autosomal dominant
 - Autosomal recessive
 - X-linked

Structural spine, thorax or rib abnormality:
- Abnormal vertebral segmentation (AVS)
- Spondylocostal dysostosis (SCD)

Failure of vertebral formation & segmentation:
- VACTERL association

Idiopathic:
- Multifactorial
- Environmental + Genetics

Congenital:
- Chromosome
 - Somatic

Childhood-onset:
- Progressive
- Multiple anomalies
 - Neuromuscular
 - Connective tissue
 - Skeletal dysplasias
 - Neurocutaneous
 - Metabolic & Storage disorders
 - Overgrowth: Generalized & Segmental

Isolated:
- Stable
Abnormal Vertebral Segmentation (AVS)

- AVS in humans is a common congenital abnormality (2/1000 births) that results in uneven or fused vertebrae

Somitogenesis

• Early patterning of the axial skeleton is controlled by genes that regulate the segmentation of paraxial mesoderm into somites and differentiation into sclerotomes

• Occurs bilaterally, in a timed rostro-caudal sequence
 • Molecular segmentation “clock”: periodic activation of genes in the Notch gene and related gene signaling pathways

• Somites give rise to the vertebrae, dorsolateral portion of the ribs, dermis of the dorsal skin, and skeletal muscle of the body wall and limbs
TABLE 1. Some Syndromes and Disorders That Include Abnormal Vertebral Segmentation

<table>
<thead>
<tr>
<th>Syndromes / disorders</th>
<th>OMIM reference</th>
<th>Gene(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrofacial dysostosis</td>
<td>263750</td>
<td>JAGGED1, NOTCH2</td>
</tr>
<tr>
<td>Agenesis</td>
<td>118450</td>
<td></td>
</tr>
<tr>
<td>Ahamal b</td>
<td>601344</td>
<td></td>
</tr>
<tr>
<td>Atelosteogenesis III</td>
<td>108721</td>
<td>FLNB</td>
</tr>
<tr>
<td>Campomelic dysplasia</td>
<td>211970</td>
<td>SOX9</td>
</tr>
<tr>
<td>Casamassima-Morton-Nance b</td>
<td>271520</td>
<td></td>
</tr>
<tr>
<td>Caudal regression b</td>
<td>182940</td>
<td></td>
</tr>
<tr>
<td>Cerebro-facio-thoracic dysplasia b</td>
<td>213980</td>
<td></td>
</tr>
<tr>
<td>CHARGE</td>
<td>214800</td>
<td>CHD7</td>
</tr>
<tr>
<td>“Chromosomal”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Currarino</td>
<td>176450</td>
<td>HLXB9</td>
</tr>
<tr>
<td>De La Chapelle b</td>
<td>256050</td>
<td></td>
</tr>
<tr>
<td>DiGeorge / Seldáčková</td>
<td>188400</td>
<td>Chromosomal</td>
</tr>
<tr>
<td>Dysspndylochondromatosis b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Femoral hypoplasia-usual facies b</td>
<td>134780</td>
<td></td>
</tr>
<tr>
<td>Fibrodyplasia ossificans progressiva</td>
<td>135100</td>
<td>ACVR1</td>
</tr>
<tr>
<td>Fryns-Moerman b</td>
<td>164210</td>
<td></td>
</tr>
<tr>
<td>Goldenhar b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmes-Schimke b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incontinentia pigmenti</td>
<td>308310</td>
<td>NEMO</td>
</tr>
<tr>
<td>Kabuki b</td>
<td>147920</td>
<td></td>
</tr>
<tr>
<td>Kaufman-McKusick</td>
<td>236700</td>
<td>MKKS</td>
</tr>
<tr>
<td>KIB syndrome a</td>
<td>148050</td>
<td></td>
</tr>
<tr>
<td>Klippel-Feil b</td>
<td>148900</td>
<td>?PAX1</td>
</tr>
<tr>
<td>Larsen</td>
<td>150250</td>
<td>FLNB</td>
</tr>
<tr>
<td>Lower mesodermal agenesis b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maternal diabetes b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MURCS association b</td>
<td>601076</td>
<td></td>
</tr>
<tr>
<td>Multiple pterygium syndrome</td>
<td>265000</td>
<td>CHRNG</td>
</tr>
<tr>
<td>OEIS syndrome b</td>
<td>258040</td>
<td></td>
</tr>
<tr>
<td>Phavera b</td>
<td>261575</td>
<td></td>
</tr>
<tr>
<td>Rapadilino</td>
<td>266280</td>
<td>RECQL4</td>
</tr>
<tr>
<td>Robinow b</td>
<td>180700</td>
<td>ROR2</td>
</tr>
<tr>
<td>Rolland-Desbuquois b</td>
<td>224400</td>
<td></td>
</tr>
<tr>
<td>Rokitansky sequence b</td>
<td>277000</td>
<td>? WNT4</td>
</tr>
<tr>
<td>Silverman b</td>
<td>224410</td>
<td>HSPG2</td>
</tr>
<tr>
<td>Simpson-Golabi-Behmel</td>
<td>318270</td>
<td>GPC3</td>
</tr>
</tbody>
</table>

Syndromes & Disorders with AVS & EOS

<table>
<thead>
<tr>
<th>Syndrome</th>
<th>OMIM Reference</th>
<th>Gene(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sirenomelia b</td>
<td>182940</td>
<td></td>
</tr>
<tr>
<td>Spondylocarpotarsal synostosis</td>
<td>269550</td>
<td>FLNB</td>
</tr>
<tr>
<td>Spondylocostal dysostosis</td>
<td>277300</td>
<td>DLL3, MESP2, LNFG</td>
</tr>
<tr>
<td>Spondylothoracic dysostosis b</td>
<td>277300</td>
<td></td>
</tr>
<tr>
<td>Thakker-Donnat b</td>
<td>227255</td>
<td></td>
</tr>
<tr>
<td>Torsello b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urioste b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VATER / VACTERL b</td>
<td>192350</td>
<td></td>
</tr>
<tr>
<td>Verloove-Vanhörick b</td>
<td>215850</td>
<td></td>
</tr>
<tr>
<td>Wildervanck b</td>
<td>314600</td>
<td></td>
</tr>
<tr>
<td>Zimmer b</td>
<td>301090</td>
<td></td>
</tr>
</tbody>
</table>

a VATER, vertebral defects, anal atresia, tracheoesophageal fistula, radial defects, and renal anomalies; VACTERL, vertebral defects, anal atresia, cardiac defects, tracheoesophageal fistula, radial defects and renal anomalies, and nonradial limb defects.

b Underlying cause not known.
Spondylocostal Dysostosis (SCD)

- Characterized by rib fusions, rib deletions, hemivertebrae and loss of vertebrae, causing truncal shortening

- Vertebral segmentation anomalies in SCD involve primarily cervical vertebrae similar to Klippel-Feil Syndrome
 - Mutation in 4 genes involved in the Notch signaling pathway (DLL3, MESP2, LFNG and HES7) account for ~30% of SCD cases
 - DLL3 most common cause
Klippel-Feil Anomaly/Syndrome (KFS)

• Characterized by variable segmentation defects in the cervical vertebrae (Types I-III)

• Accompanied by other organ malformations, including the skeletal, cardiac, hearing, ophthalmologic and renal systems

• Genetically heterogenous
 • Etiology for most cases unknown
Radiological findings ~ Vertebral anomalies

C2-3 & T1-T5 segmentation anomalies; C6-7 hemivertebrae

C2-C3 and C4-C5 segmentation anomalies

Dorsal Ventral
C2-3, C4-6 segmentation failure; T4 hemivertebrae
VACTERL Association

Vertebral- Anal- Cardiac-Tracheo-Esophageal- Renal-Radial-Limb Defects

• V vertebrae
• A imperforate anus or anal atresia
• C cardiac anomalies.
• TE tracheoesophageal fistula
• R renal or kidney anomalies.
• L limb anomalies (radial agenesis).
Multiple anomalies

Syndromic EOS

- Neurocutaneous
 - Neurofibromatosis, type 1
- Skeletal dysplasia
 - Osteogenesis Imperfecta
- Connective tissue d/os
 - Marfan syndrome
- Neuromuscular
 - Spinal Muscular Atrophy
- Overgrowth – Somatic D/os
 - Proteus syndrome
- Metabolic – Lysosomal Storage
 - Mucopolysaccharidoses, type IVA
Neurocutaneous Disorders - key features

- Skin abnormalities
 - Hyperpigmentation/hypopigmentation
- CNS
 - Learning disabilities
 - Seizures/focal neurologic abnormalities
 - Macrocephaly
- Tumors
- Vasculopathies
- Skeletal - Scoliosis
Neurofibromatosis, type 1 (NF1)

A diagnosis of NF1 is made in children with two or more of the following criteria:

- Skin lesions (neurofibromas)
- Multiple “café au lait” spots (light coffee-colored spots)
- Freckling in the groin and armpits
- Eye abnormalities, including Lisch nodules (tiny pigmented tumors in the iris)
- Certain skeletal abnormalities
- A family member with NF1.
Scoliosis in NF1

Dystrophic
vs. Non-dystrophic
Overgrowth Syndromes – key features

- Generalized OG: Height & Head circumference >2SD above the mean (>98%)
- Advanced bone age
- Symmetric enlargements of other body parts, e.g. hands, feet
- Usually have ID and/or congenital anomalies

 Distinguished by other minor (dysmorphic) and major anomalies
- Sotos syndrome most common, ~30% with scoliosis
PI3K-AKT Signaling Pathway

Keppler-Noreuil, Parker, Darling, Martinez-Agosto, 2016, AJMG Semin
Segmental overgrowth disorder – Proteus syndrome
Metabolic & Storage Disorders – key features

- Often **progressive**
- Many with “coarsening” of craniofacial features, macrocephaly
- Distinctive skeletal abnormalities
- Skin and connective tissue changes
 - Thickening of skin, ectodermal dysplasias
- Cataracts or corneal clouding
- Developmental and neurologic abnormalities
- Cardiomyopathy and valvular abnormalities
- Liver/spleen enlargement
Mucopolysaccharidosis Type IVA

- Lysosomal storage disorder – reduced N-acetylgalactosamine 6-sulfatase (GALNS) activity
- Characteristic findings:
 - Marked disproportionate short stature with short trunk and normal limbs (arm span exceeds height)
 - Ulnar deviation of the wrists
 - Pectus carinatum and flaring of the lower rib cage
 - Gibbus (short-segment structural thoracolumbar kyphosis resulting in sharp angulation of the back), kyphosis, and scoliosis
 - Genu valgum
 - Hypermobile joints
 - Waddling gait with frequent falls
Mucopolysaccharidoses Type IVA
Congenital Skeletal Dysplasias – key features

- Overall number of disorders: >450
 - Most have single gene etiology
- Suspect in **disproportionate short stature**
 - Short limbs
 - Short trunk
- Distinctive skeletal abnormalities on X-rays
 - Abnormalities of epiphysis, metaphysis, diaphysis
 - Abnormal bone density
Osteogenesis Imperfecta (OI)

- Skeletal dysplasia
- Collagen-related gene variants: 19 different types
 - Type III has higher prevalence of severe scoliosis than Types I and IV
- Presence of blue sclera, hearing loss, bone fragility, bone deformities, Wormian bones
- Scoliosis in 36-89%
 - Onset from age 2 years (some congenital onset), rapidly progresses after 5 years or curve >50 degrees
- Vertebral defects: codfish, wedge-shaped, platyspondyly
Scoliosis in Osteogenesis Imperfecta
Connective Tissue Disorders – key features

• Joint
 • Hypermobile joints - sometimes contractures
 • Hernias

• Skeletal
 • Disproportionate stature
 • Chest wall abnormalities: pectus excavatum/carinatum
 • Craniofacial minor anomalies

• Cardiac and vascular: aortic and other arterial dilatations

• Ophthalmologic: lens dislocation, keratoconus, globe rupture

• Skin: hyperelasticity, bruising, bleeding
Marfan syndrome – characteristic features
The Spine in Marfan Syndrome

• Scoliosis in 60% patients
• Few need treatment
 • Bracing
 • 15-25 degrees (<40 degrees)
 • Slow progression
 • Surgery: spine fusion
 • 35-40 degrees have more rapid progression through growth, risk for pulmonary c/os
 • Cardiac workup
 • Higher complication rates
Neuromuscular disorders e.g. Spinal muscular atrophy

- AR disorder of degenerative anterior horn cells of spinal cord
- 3 types – continuum of clinical severity
- Symmetric proximal muscle weakness and atrophy of skeletal muscles
 - Infants: Floppy, preservation of EOM, small movements of fingers
 - Child: Gower’s sign
- Intelligence unaffected
- In SMA type II and type III
 - Progressive scoliosis
 - Onset after loss of ability to walk – common in children <4 years (SMA II)
Summary

• Heterogenous etiologies & pathogeneses – single gene variants, teratogens, multifactorial

• Genetic
 • Isolated – Congenital structural vertebral formation & segmentation

• Syndromic
 • Connective tissue disorders
 • Skeletal dysplasias
 • Metabolic/Storage disorders
 • Neuromuscular disorders
 • Neurocutaneous disorders
 • Generalized and segmental overgrowth disorders
 • Other Multiple Congenital Anomaly syndromes
Thank you!