Foundation Iliac Fusion Combined With Shilla

A Technique For The Treatment Of Neuromuscular Scoliosis (NMS) With Pelvic Obliquity

Zhenkai Wu, MD Richard M Schwend MD

Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai

Children’s Mercy Hospital, Kansas City MO
Disclosures

- POSNA BOD
- AAP Executive Committee
- Project Perfect World Medical Advisory Board
- Miracle Feet Medical Advisory Board
- Consultant Orthopediatrics
- Medtronic charitable donation
Principles of Shilla

- Harness the growth of the spine through the end plates.
- Maintain flexibility to prevent auto-fusion and stiffness.
- Load share among multiple vertebral levels.
- Less constrained system, guides the growth of the abnormal spine to a more normal shape and position.
Principles of Shilla

• Harness the growth of the spine through the end plates.
• Maintain flexibility to prevent auto-fusion and stiffness.
• Load share among multiple vertebral levels.
• Less constrained system, *guides* the growth of the abnormal spine to a more normal shape and position.
Principles of Shilla

• Harness the growth of the spine through the end plates.
• Maintain flexibility to prevent auto-fusion and stiffness.
• Load share among multiple vertebral levels.
• Less constrained system, guides the growth of the abnormal spine to a more normal shape and position.
Principles of Shilla

- Harness the growth of the spine through the end plates.
- Maintain flexibility to prevent auto-fusion and stiffness.
- Load share among multiple vertebral levels.
- Less constrained system, **guides** the growth of the abnormal spine to a more normal shape and position.
The Problem: Pelvic Obliquity Progression

• A 3 yo old girl with SMA and pelvic obliquity (from GSSG)
• At 9 years follow up...
Ideal

• The reason
 • Apical fusion technique can’t control the pelvic obliquity

• Inspiration and method
 • The Pylon Concept
 • Hard foundation (fixed and fusion) + growth friendly rod-screw system.
 • Correct apex of deformity without fusion
Indications and Methods

• Enough growth remaining to be worthwhile (under age 10 years).
 • Typically 5-9 years of age.

• Sufficient end plates to drive the growth.

• Flexible curve.

• Surgical goals:
 • balanced spine over a level pelvis
 • secure pelvic foundation
 • minimal constraint/prominence of the upper implants
 • minimal spine exposure to maintain growth and flexibility

• IRB approved, single center, retrospective, cohort study

• 2008-July 2017 – Inclusion: NMS patients who underwent a Shilla technique with pelvic screw foundation.

• Minimum 2 years follow up.
Indications and Methods

- Enough growth remaining to be worthwhile (under age 10 years).
 - Typically 5-9 years of age.
- Sufficient end plates to **drive** the growth.
- Flexible curve.
- Surgical goals:
 - balanced spine over a level pelvis
 - secure pelvic foundation
 - minimal constraint/prominence of the upper implants
 - minimal spine exposure to maintain **growth and flexibility**
- IRB approved, single center, retrospective, cohort study
- Minimum 2 years follow up.
Results: 17 cases - 7 met inclusion criteria

<table>
<thead>
<tr>
<th>CASE</th>
<th>GENDER</th>
<th>DIAGNOSIS</th>
<th>BLOOD LOSS</th>
<th>AGE</th>
<th>FOLLOW UP TIME</th>
<th>PELVIC OBLIQUITY (DEGREE)</th>
<th>COBB ANGLE (DEGREE)</th>
<th>APEX LOCATION</th>
<th>T1-S1 LENGTH (CM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>SMA2</td>
<td>450</td>
<td>8.6</td>
<td>6.6</td>
<td>Preop: -14 1 year Postop: 2 Last follow up: -4</td>
<td>Preop: 42 1 year Postop: 10 Last follow up: 31</td>
<td>T5 T5 T2</td>
<td>28.7 30.7 42.4</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>spina bifida</td>
<td>750</td>
<td>3.5</td>
<td>7.2</td>
<td>Preop: 9 1 year Postop: 3 Last follow up: 2</td>
<td>Preop: 62 1 year Postop: 18 Last follow up: 20</td>
<td>L5 L4-5 L4</td>
<td>18.4 20.0 25.2</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>SMA2</td>
<td>700</td>
<td>5</td>
<td>3.9</td>
<td>Preop: 37 1 year Postop: 3 Last follow up: 0</td>
<td>Preop: 121 1 year Postop: 21 Last follow up: 23</td>
<td>T11 T11 T10-11</td>
<td>20.8 30.9 35.2</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>CP</td>
<td>1450</td>
<td>5.2</td>
<td>10.2</td>
<td>Preop: 18 1 year Postop: 4 Last follow up: -5</td>
<td>Preop: 53 1 year Postop: 18 Last follow up: 84</td>
<td>T10 T9 T3</td>
<td>30.4 33.5 42.5</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>CP</td>
<td>1150</td>
<td>4.7</td>
<td>5</td>
<td>Preop: -23 1 year Postop: -4 Last follow up: -1</td>
<td>Preop: 67 1 year Postop: 36 Last follow up: 28</td>
<td>L3 L3 L2</td>
<td>29.0 34.3 39.4</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>CP</td>
<td>320</td>
<td>5.2</td>
<td>5.3</td>
<td>Preop: -31 1 year Postop: -4 Last follow up: -8</td>
<td>Preop: 75 1 year Postop: 26 Last follow up: 40</td>
<td>L4 L3 L3</td>
<td>24.6 28.5 36.9</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>CMD Congenital muscular dystrophy</td>
<td>280</td>
<td>6.7</td>
<td>2</td>
<td>Preop: 11 1 year Postop: 5 Last follow up: 6</td>
<td>Preop: 92 1 year Postop: 56 Last follow up: 63</td>
<td>T11 T10 T10</td>
<td>26.5 31.4 33.0</td>
</tr>
<tr>
<td>mean</td>
<td></td>
<td></td>
<td>728.6</td>
<td>5.6</td>
<td>5.7</td>
<td>Preop: 20.4 1 year Postop: 3.6 Last follow up: 3.7</td>
<td>Preop: 73.1 1 year Postop: 26.4 Last follow up: 41.3</td>
<td>T11 T10 T10</td>
<td>25.5 30.0 36.4</td>
</tr>
</tbody>
</table>

T1-S1 length 25 cm Preop → 30 cm one year post op → 36 cm final FU at 5.7 years. 1 cm/year.
Case 1

- 5 yf GMFCS 5 CP
- Functional goal: comfort, sitting, care, nutrition.
Postop

1 year follow up
2 year follow up
5 year follow up
Case 2 July 2008

- 5 yf GMFCS 5 CP 22 kg
- Functional goal: comfort, sitting, care, nutrition.
postop

1 year follow up

2 year follow up

10 year follow up
13 yo, 5 year post op
Apex migration

10 years postop
Only had index surgery
Apex T3
Lessons Learned

• This technique allows
 • Spine to stay flexible while implants *guide* the growth
 • Natural end plate growth *drives* the growth
 • Balanced spine over level pelvis. Pelvic obliquity improved and not deterioration at FU
 • Potential for “one and done” surgery, but not always

• Avoid Crankshaft. Don’t expose the spine “extra-periosteal”. Use C arm and navigation to not even see the spine.

• Do the surgery when spine still flexible
• May see new apex at proximal part of the construct
• Avoid PJK
• Need for better design