Spine growth modulation using titanium clip / screw device:
Vertebralae and disc heights at 1 year

Bylski-Austrow DI, Entsuah NA, Glos DL, Reynolds JE, Wall EJ

Disclosure: SpineForm LLC, consultant (uncompensated);
IP held under CCHMC standard policy
Spine growth modulation

- Prospective safety trial
 - First human use
 - IRB approved
 - USA FDA Investigational Device Exemption (IDE)
 - Clinicaltrials.gov
- Late juvenile or early AIS
 - Wall ICEOS ‘13, IMAST ‘14

Best results at 1 year
Previous clinical studies

- **AIS curve progression**
 - Disc wedging precedes vertebral body wedging
 - Grivas et al IRSSD 2006
 - Will et al Spine 2009
 - Schlosser, Castelein et al SRS 2014

- **30 year follow-up of AIS**
 - Vertebral body height ratios (VBHR) increased ~ 5% during curve progression of 18°
 - Volz, Dolan et al Scoliosis 2012

- **Not yet reported for any growth modulation**
Purpose

Determine heights, side-to-side, of discs and vertebrae at treated levels in coronal plane immediately pre-op and at 1 year post-op

Hypothesis

Symmetry will increase with time
Methods

• All subjects (n = 6)
• High progression risk
 – Skeletally immature, age > 10 yrs
 – Single thoracic curve, Lenke 1A/B
 – 25° to 40° Cobb angle
 – Risser 0 + Open triradiates
• Disc & vertebral heights
• Concave and convex
 – Every instrumented level with ~ clear boundaries
 – Digital radiography
 – Clinical PACS at 100% mag

Entirely endoscopic Implants wedge disc
Symmetry: Height ratios $H_{\text{concave}} / H_{\text{convex}}$

- Statistics: Paired t-tests, one-tailed, Bonferroni
 - Two primary comparisons, $\alpha = 0.025$
Results

- 3 females, 3 males
 - 12.1 years (±1.7) at surgery

- Curvature
 - 34° Pre-op (± 3)
 - 30° PO 1 yr (± 13)

<table>
<thead>
<tr>
<th># Implants</th>
<th>6</th>
<th>range 5 – 7</th>
</tr>
</thead>
<tbody>
<tr>
<td># Discs</td>
<td>5.2</td>
<td>range 4 – 7</td>
</tr>
<tr>
<td># Vertebrae</td>
<td>6.5</td>
<td>range 6 – 8</td>
</tr>
</tbody>
</table>
Disc heights

![Bar chart showing disc heights for concave and convex shapes. The chart compares pre-operative (Pre-op) and post-operative (PO 12 mo) data.](image)
Vertebral body heights

Vertebral height (mm)

Concave
- Pre-op
- PO 12 mo

Convex
- Pre-op
- PO 12 mo
Height ratios

Symmetric 1.0

H_{concave} / H_{convex}

Disc

Vertebra

Pre-op

PO 12 mo

* p < 0.025

* p < 0.02

0.67

0.82

0.91

0.94

Cincinnati Children's

UNIVERSITY OF Cincinnati
Height differences: Pre-op to 1 year

Vertebra

$\Delta 3\%$

Disc

$\Delta 15\%$

$
\Delta: $ Side-to-side difference in height from t 0- to t 1yr

Concave

Convex

Vertebra +7%

Disc +23%

+4%

+8%
Discussion

- **Limitations**
 - Small n
 - Short PO time
 - Resolution, 2D
 - Biased - curve with greatest axial rotation & progression
 - Apical discs not discernible
 - Longer-term & reliability
 - In 30 year f/up of AIS (scanned plain films, not digital radiography)

<table>
<thead>
<tr>
<th>Tolerance limits</th>
<th>Intra-rater</th>
<th>Inter-rater</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertebral body height ratio</td>
<td>± 12%</td>
<td>± 23%</td>
</tr>
<tr>
<td>Disc wedge angle</td>
<td>± 7°</td>
<td>± 11°</td>
</tr>
</tbody>
</table>

- Volz, Dolan et al Scoliosis 2012
Comparisons

Cobb angle progression in AIS begins at disc

Will, Stokes, Qui, Walker, Sanders
Spine 34: 2009

Cobb angle =

Disc wedge angle +
Vertebral wedge angle

Stop disc wedging early, prevent vertebral wedging?
Conclusions

• Symmetry of discs and vertebrae increased in 1 year in trial of growth modification using titanium implant constructs

• Greatest increase was in disc height on concave side
 - Decompression of discs on side contralateral to implants

• Increases in heights and ratios suggest mechanisms of both curve correction, and of continued curve progression, after treatment, in small early stage cohort
Acknowledgments & Disclosures

Funding (NE)
• Robert E. McNair Baccalaureate Research Program

Base study
• Ohio Third Frontier
 – TECH 11-042B
• FDA R01 - 04144-01

Disclosures: Bylski-Austrow DI: A; SpineForm. F; SpineForm; Entsuah N: None; Glos DL: None. Reynolds JE: E; SpineForm. Wall EJ: A; SpineForm LLC. B; OrthoPediatric Sports, OrthoPediatric Spine, Stryker Trauma. D; SpineForm. F; SpineForm

Dziękuję Thank you