Masters Techniques:
Rib Anchored Distraction Based Growing Rods

David L. Skaggs, MD
Professor and Chief
Children’s Hospital Los Angeles
University of Southern California
Use of Spine Hooks on Ribs NOT FDA Approved
Part 1: Theoretical Advantages
Hooks on Ribs: No intentional fusion
Do not expose or fuse upper spine
No thorocotomy!
Traditional Growing Rods Cause Autofusion
Cahil, et. Al, Spine 2010

- 8/9 patients autofused - Stiff Curves!
- Growing rods in for 7 yrs
- Mean of 7 osteotomies done at final fusion
- 44% Cobb Angle correction
• Movement of the ribs joints
• “slop” of the hooks
?= less autofusion
Traditional Growth Rods Get Stiff Over Time

T1-S1 Gain vs. # of Lengthenings

? Smaller Effect with rib anchors?

But continued gain even at L11-L15
• Movement of the ribs joints
• “slop” of the hooks
?= Less likely to break rods
• Movement of the ribs joints
• “slop” of the hooks
?= Less likely to break rods

GSSG Study – 176 pts, 56 month f/u
rib anchored growing rods 77%
less likely to break rods than
spine anchored
Nutritionally Depleted Population

- Soft tissue Coverage Challenging
- 47% pts pre-op failure to thrive (<5 percentile)

Myung, 2009
Rib based anchors better for PJK?

- Hybrids 42% (5/12) Vs. Growing rods 62% (10/17)
 - $P=0.059$

Advantages of rib anchors

• Avoid proximal fusion
• Less rigid system
 – Minimize autofusion?
 – Less rod breakage
• Lower Profile
• Less PJK?
Advantages of rib anchors

• Avoid proximal fusion
• Less rigid system
 – Minimize autofusion?
 – Less rod breakage
• Lower Profile
• Less PJK?

Possible Disadvantage
– Does it hurt pulmonary function?
Why use “spine hooks” instead of VEPTR

- Already in hospital
 - Staff familiar
 - Minimize inventory
 - I am more familiar with systems I use daily
- No IRB approval needed
- Less expensive
- Easy to adjust sagittal contour and hook placement
Why use “spine hooks” instead of VEPTR

• Already in hospital
 – Staff familiar
 – Minimize inventory
 – I am more familiar with systems I use daily

• No IRB approval needed

• Less expensive

• Easy to adjust sagittal contour and hook placement

My opinion
Clinical Equipose Between “spine hooks” and VEPTR
Part 2: Technique

- Disclosure - Technique is pretty straightforward
- Few Problems
Midline Incision - Plan for final fusion

Single Rod Case
3 and 5 cm incisions
no thoracotomy
Midline Incision - Plan for final fusion

- No Dissection of Proximal Spine
- Feel bump of transverse process
- Split muscles just lateral to TP

Adjacent to TP
Adjacent to TP

Extra-Periosteal
Want ribs to hypertrophy
NOT in chest
No chest tube
No Advantage to “Claw”
Don’t use first rib
Fails Posterior
Case Example
5yo boy

- Ambulatory
- Neuromuscular
- 91° Scoliosis - progressive
- Extremely thin
Current Preference

- Dual-sided constructs
- ≥ 3 up-going hooks

REALLY thin kids

NO Thorcotomy
Straight Longitudinal Connector

Too Long (straight) Vs. Too Short (Few lengthenings)

Bend Rods

Connector Thoraco-Lumbar
Lengthening Through Curved Rods

- More Posterior Prominence
- More Kyphosis
Lengthening Through Curved Rods

- More Posterior Prominence
- More Kyphosis
Lengthening Through Curved Rods

- More Kyphosis
- + Sagittal Balance
Rib Anchored

Scoliosis
BAILOUT-Previous infection
Previous laminectomies/scarring
Multiple rib fusions/thoracostomy

Spine Anchored

Kyphosis
Thank You
Many Options

Unilateral Dual Rods
VEPTR like

Unilateral Single Rods

Bilateral Dual Rods
Growing rod like
Current Preference

- Dual-sided constructs
- ≥3 up-going hooks
<table>
<thead>
<tr>
<th>Normal Growth</th>
<th>0-5 yrs</th>
<th>2.0 cm/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-10 yrs</td>
<td></td>
<td>1.2 cm/yr</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5 + 6 yrs</td>
</tr>
<tr>
<td>39 mo f/u</td>
</tr>
<tr>
<td>1.1 - 1.8 cm/yr</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VEPTR, Congenital, JBJS, 2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 + 3 yrs</td>
</tr>
<tr>
<td>50 mo f/u</td>
</tr>
<tr>
<td>0.83 cm/yr</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hybrid Implants, 85% congenital</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 + 1 yrs</td>
</tr>
<tr>
<td>37 mo f/u</td>
</tr>
</tbody>
</table>

- **Unilat**: -0.65 cm/yr
- **Bilat**: -1.2 cm/yr
Sagittal Contouring
Video
Rudimentary first thoracic rib with post-fixed brachial plexus
Growing Rod Surgery is Like ..
Hooks on Ribs: Lower Profile than Spine

Spine Anchors
References

Purpose

- To report the early results of this technique.
No Thorocotomy

2 ribs

2 screws
Complications

• Risk factors:
 – Younger age at index surgery (p=0.12)
 – Larger initial Cobb angle (p=0.12)
<table>
<thead>
<tr>
<th></th>
<th>% rod breakage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional Growing Rods</td>
<td>120% (12/10)</td>
</tr>
<tr>
<td>Hybrid growing rods</td>
<td>0% (0/6)</td>
</tr>
<tr>
<td>Veptr</td>
<td>31% (6/19)</td>
</tr>
</tbody>
</table>
• FDA Off label
• No IRB approval
• $ < VEPTR
• Allows precise hook placements - non-constrained
 – Sagittal contouring
Conclusions

• Complications in Hybrids is less common than other distraction based growth implants
 – Low profile
 – Multiple non-constrained load sharing anchors
 – Bend Sagittal profile to meet patients needs
 – Uses standard spine implants (no IRB approval needed)

Avoids intentional fusion of upper thoracic spine
Rib Anchored Distraction Based Implants
Growing Rods
Law of Diminishing Returns
T1-S1 Gain Vs. # of Lengthenings

Gain (mm)

Lengthening

<table>
<thead>
<tr>
<th>Length</th>
<th># Lengthenings</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length 1</td>
<td>36</td>
<td>10</td>
</tr>
<tr>
<td>Length 2</td>
<td>37</td>
<td>6</td>
</tr>
<tr>
<td>Length 3</td>
<td>38</td>
<td>4</td>
</tr>
<tr>
<td>Length 4</td>
<td>35</td>
<td>2</td>
</tr>
<tr>
<td>Length 5</td>
<td>26</td>
<td>1</td>
</tr>
<tr>
<td>Length 6</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>Length 7</td>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>