Master Technique – Growing Rods

Behrooz A. Akbarnia, MD
Clinical Professor, University of California, San Diego
Medical Director, San Diego Center for Spinal Disorders
La Jolla, California

7th International Congress on Early Onset Scoliosis and Growing Spine
San Diego California November 21-22, 2013
Disclosures (Growing Spine)

Growing Spine Foundation (a)
DePuy Spine (a,b)
Ellipse Tech. (a,b)
K2M (a,b)
Kspine (b)

a. Grants/Research Support
b. Consultant
c. Stock/Shareholder
d. Speakers’ Bureau
e. Other Financial Support
Growing Rod Technique Tips

- Patient selection
- Dual rod vs single rod
- Rod contour
- Level selection
- Subcutaneous or Submuscular
- Connectors
- Foundations (anchors)
- Lengthening and exchange
- Post-op care
Growing Rod Technique Tips

- Patient selection
- Dual rod vs single rod
- Rod contour
- Level selection
- Subcutaneous or Submuscular
- Connectors
- Foundations (anchors)
- Lengthening and exchange
- Post-op care
Treatment Goals

- Deformity Correction (spine and chest) and maintenance of correction
- Improve pulmonary and spinal function
- Normalize the spinal growth and avoid early fusion (maintain mobility)
- Minimize complications
- Improve quality of life and the care of the patient
Indications for Growth-Friendly Surgery

- **Progressive** curves not controlled or amenable to bracing or casting
- Curves where *growth preservation* would be beneficial
- Curves that require management of both the **chest wall and the scoliosis**
Significance of sagittal alignment

- **Syndromic** patients with early onset scoliosis with thoracic **kyphosis over 40** degrees who undergo growing rod treatment should be monitored very closely for complications, particularly for implant failure.
08/01/2005
Cobb 82°
T1-T12 150 mm
T1-S1 219 mm

06/04/2012
Cobb 58°
T1-T12 195 mm
T1-S1 291 mm
Cumulative survivorship dropped for 52% after 7th surgery (p<0.05)
New Data Suggests Benefit to Delaying Surgery
Growing Rod Surgery

• 13% less complications each year older child is at initial surgery
• 24% higher risk of complications with each surgery
• Length gained drastically reduced by 7th lengthening
• Weight gain occurs only in those >4 yrs old

Must weigh against risk of worsening curve

Does casting delay need for surgery?
Classification of EOS (C-EOS)

Etiology
- Congenital/Structural
- Neuromuscular
- Syndromic
- Idiopathic

Cobb Angle
1: <20°
2: 21-50°
3: 51-90°
4: >90°

Kyphosis
(-): <20°
N: 21-50°
(+): >50°

APR Modifier
- P0: <10°/yr
- P1: 10-20°/yr
- P2: >20°/yr
Validation Studies

(ICEOS)

Risk by Classification:

Lower Risk of Rapid Failure
- Congenital (21-50, 51-90); C2, C3
- Syndromic (21-50); S2
- Idiopathic (51-90); I3

Higher Risk of Rapid Failure
- Congenital (>90); C4
- Neuromuscular (>51-90); N3
- Neuromuscular (>90); N4
- Syndromic (51-90); S3

Flynn, Vitale et al.
Halo – Wheelchair

Halo – Standing Frame

C. Johnston TSRH
Conradi’s Disease

11 Months

20 Months
SR – AGE 2 PRE-OP
SR - 28 YARS POST-OP
SR Age 32
Growing Rod Technique Tips

- Patient selection
- **Dual rod vs single rod**
- Rod contour
- Level selection
- Subcutaneous or Submuscular
- Connectors
- Foundations (anchors)
- Lengthening and exchange
- Post-op care
Growing Rods
RESULTS (cont’d)

<table>
<thead>
<tr>
<th>GROUP</th>
<th>Cobb Angle (Pre-Initial to Post Final)</th>
<th>% Correction</th>
<th>Increase in T1-S1 Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single with apical</td>
<td>85° → 65°</td>
<td>23%</td>
<td>6.4cm</td>
</tr>
<tr>
<td>Single w/o apical</td>
<td>61° → 39°</td>
<td>36%</td>
<td>7.6cm</td>
</tr>
<tr>
<td>Dual w/o apical</td>
<td>92° → 26°</td>
<td>71%</td>
<td>11.8cm</td>
</tr>
</tbody>
</table>
First Patient at TCSC
NF1

Courtesy of
Robert Winter, M.D.
Six years after fusion, now age 16
Hooks
Growing Rod Technique Tips

- Patient selection
- Dual rod vs single rod
- Rod contour
- Level selection
- Subcutaneous or Submuscular
- Connectors
- Foundations (anchors)
- Lengthening and exchange
- Post-op care
Growing Rod Technique Tips

- Patient selection
- Dual rod vs single rod
- Rod contour
- **Level selection**
- Subcutaneous or Submuscular
- Connectors
- Foundations (anchors)
- Lengthening and exchange
- Post-op care
At age 6 y.o and 2 years after growing rod insertion

Poor Selection of Instrumentation levels

No Cross link

Too Short
Growing Rod Technique Tips

- Patient selection
- Dual rod vs single rod
- Rod contour
- Level selection
- **Subcutaneous or Submuscular**
- Connectors
- Foundations (anchors)
- Lengthening and exchange
- Post-op care
• Underwent first lengthening 6 months later
 - Post-op evaluation were normal
 - Curve T10-L2: 42 degrees
 - T1S1: 291 mm
Growing Rod Technique Tips

- Patient selection
- Dual rod vs single rod
- Rod contour
- Level selection
- Subcutaneous or Submuscular
- Connectors
- Foundations (anchors)
- Lengthening and exchange
- Post-op care
N.O. 5+11 Girl (IIS)

Scoliosis:
- Pre-op: 90°
- Post-op: 55°

T1- S1(mm):
- Pre-op: 224
- Post-op: 273
- FU: 331
- Elongation: 4.9
- Growth: 5.8
- Total: 10.7 cm
- 1.2 cm per year

Preop 6 years FU
6 year Follow-up
Post-op Rod change
MG – Loosening of hooks

9/2010
2/2011
Nutritional Improvement with Growing Rods

- Significant weight gain ($p=0.004$)
- 49% gained weight
 - 18 percentile increase

Myung, Skaggs, 2009
Screws Affected by Growth

Dr El-Sebaie

RESULTS

- No structural failures of the implants
- All failures were related to bone-implant interface
RESULTS

TYPICAL LOAD-DISPLACEMENT CURVES

<table>
<thead>
<tr>
<th>Displacement (mm)</th>
<th>Failure Force (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>250</td>
<td>3</td>
</tr>
<tr>
<td>500</td>
<td>6</td>
</tr>
<tr>
<td>750</td>
<td>9</td>
</tr>
<tr>
<td>1000</td>
<td>12</td>
</tr>
<tr>
<td>1250</td>
<td>15</td>
</tr>
</tbody>
</table>

- Screw-Screw without
- Screw-Screw with
- Hook-Hook
- Hook-Screw
Conclusion

- Four pedicle screws construct in two adjacent vertebrae had the highest failure load

- Cross Link does not seem to enhance the fixation

- Hook constructs are stronger in lumbar vs thoracic vertebra
Methods

- 20 EOS patients, treated with GR
- Foundations were classified as:
 - Adequate
 - Inadequate
- Adequate foundations defined as:
 - Combination of four hooks and a cross connector
 - Four pedicle screws
- Everything else defines as inadequate
Supra-laminar

Infra-laminar

Cross link

Adequate or Classic

Inadequate
Results

• Over all complication rate
 – Screws 12.3% (8/65)
 – Hooks 5.3% (7/131)
 – Mean time to complication: 20.8 months for screws and 17.7 months for hooks

• Complications in adequate group
 – Screws 2.7% (1/37)
 – Hooks 3% (3/99)

• Complications in inadequate foundations
 – Screws 25% (7/28)
 – Hooks 12.5% (4/32)
Biomechanical Evaluation of 4 Different Foundation Constructs Commonly Used in Growing Spine Surgery: Are Rib Anchors Comparable to Spine Anchors?

Behrooz A. Akbarnia, MD
Burt Yaszay, MD
Muharrem Yazici, MD
Nima Kabirian, MD
Kevin R. Strauss, ME
Diana Glaser, PhD
A unique fixture was designed to brace the specimen and provide a counter-force.
Pedicle Screw-Screw (SS)

Laminar Hook-Hook (HH)
Rib-Rib Hook (RR)

Transverse Process-Laminar Hook (TPL)
Results

• All specimens eventually failed at the **bone-anchor interface**. No failures were observed in the instrumentation utilized.

<table>
<thead>
<tr>
<th>Construct Type</th>
<th>Maximum load for failure (Mean & Standard Deviation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Screw-Screw) SS</td>
<td>349 ± 89 N</td>
</tr>
<tr>
<td>(Laminar Hook-Hook) HH</td>
<td>283 ± 48 N</td>
</tr>
<tr>
<td>(Rib Hook-Hook) RR</td>
<td>429 ± 133 N</td>
</tr>
<tr>
<td>(Transverse Process-Laminar Hook-Hook) TPL</td>
<td>236 ± 60 N</td>
</tr>
</tbody>
</table>

Young’s Modulus was calculated for each construct type and no statistically significant difference was determined.
Rib to Spine
Growing Rod Technique Tips

• Patient selection
• Dual rod vs single rod
• Rod contour
• Level selection
• Subcutaneous or Submuscular
• Connectors
• Foundations (anchors)
• Lengthening and exchange
• Post-op care
Pre-lengthening: 350mm

Post-lengthening: 377mm

27 mm of lengthening
Rod Replacement

- Both rods were weak or broken at same level
How to Avoid and how to Treat Complications

- Patient selection (age, diagnosis...)
- Correct surgical procedure (levels, sagittal alignment, techniques of exposure and instrumentation)
- Early detection of potential complications
- Treatment of complication (long term goal)
- Minimize number of surgeries
Thank you