Use of VEPTR for Treatment of Congenital Scoliosis without Fused Ribs

Jeffrey R. Sawyer MD
Associate Professor of Orthopaedics
Campbell Clinic
Memphis, Tennessee USA
Co-Authors

Robert F. Murphy, MD
Alice Moisan, RN
Derek M. Kelly, MD
William C. Warner, Jr., MD
Disclosures

Murphy AAOS
Moisan None
Kelly Elsevier, POSNA
Warner Elsevier, COS
Sawyer Elsevier, AAOS, POSNA
Introduction

Congenital scoliosis (CS) variable morphology spectrum

severe cases - thoracic insufficiency
Introduction

Congenital scoliosis (CS) variable morphology spectrum severe cases - thoracic insufficiency
Introduction

Congenital scoliosis treatment:

- observation
- casting
- growing rods
- Shilla
- VEPTR
Introduction

VEPTR effective:

- wide variety of conditions/deformities
- congenital scoliosis with fused ribs

No studies to date specifically evaluated VEPTR in CS patients w/o fused ribs.
Purpose

Characterize the use of VEPTR in patients with CS without fused ribs.
Methods

CWSD database – CS w/o fused ribs

Demographic information

Expansions/lengthenings

Complications – stratified
disease vs device
treatment plan alteration
Demographics

24 patients (12M, 12F)

Implantation age: 5.6 ± 3.4 years

mean follow-up: 4.2 years

mean # procedures: 9.3 ± 6.0

mean # expansions: 6.6 ± 4.6
Classification

PATIENT
EOS w/o fused ribs

Scoliosis +/- Kyphosis

Single Level

Multiple Levels

Generalized
> 10 levels (STD)

Regional

Multiple simple

Complex (Bar+hemi)

Abnormal segmentation with normal formation (Block)

Group 1

Group 2

Group 3

Group 4

Group 5

Deformity

Multiple Complex (bar + hemi): 17 (71%)

Single: 3

Generalized: 1

Multiple simple: 1

Abnormal segmentation: 1
Radiographic Parameters

- Scoliosis
- Kyphosis
- AP/Lat Spine height (T1-S1)
- Expected T1-T12 spine height

All measurements performed by single observer
Coronal Cobb Angle

<table>
<thead>
<tr>
<th></th>
<th>Preoperative</th>
<th>Postoperative</th>
<th>Final Follow-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>70°</td>
<td>55° (p = 0.0001)</td>
<td>54° (p < 0.0001)</td>
</tr>
</tbody>
</table>
Sagittal Cobb Angle (Kyphosis)

Preoperative 37°

Postoperative 41° ($p = 0.31$)

Final Follow-Up 47° ($p = 0.6$)
Lateral Thoracic Height (T1-T12)

Preoperative 15.3cm
Postoperative 15.8cm (p = 0.026)
Final Follow-Up 17.4cm (p = 0.04)
Complications

15/24 patients (63%)

Total of 41 complications
 Average 2.8, range 1-12

Most common:
 infection (8)
 wound dehiscence (8)
 device migration (8)
Disease Related Complications

Grade I: can be treated as an outpatient.

Grade II: requires hospitalization.

Grade III: alters the treatment plan.
Disease Related Complications

<table>
<thead>
<tr>
<th>Disease Related (n=13, 31%)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade I (outpatient)</td>
<td>5</td>
<td>33%</td>
</tr>
<tr>
<td>Grade II (hospital)</td>
<td>6</td>
<td>50%</td>
</tr>
<tr>
<td>Grade III (Δ plan)</td>
<td>2</td>
<td>27%</td>
</tr>
</tbody>
</table>
Device Related Complications

Grade I: does not require return to OR.

Grade II: unplanned return to OR.

A: single trip to OR
IB: multiple trips to OR

Grade III: alters the treatment plan.
Device Related Complications

<table>
<thead>
<tr>
<th>Grade</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade I (no OR)</td>
<td>13</td>
<td>46%</td>
</tr>
<tr>
<td>Grade IIA (1 OR)</td>
<td>8</td>
<td>29%</td>
</tr>
<tr>
<td>Grade IIB (> 1 OR)</td>
<td>3</td>
<td>11%</td>
</tr>
<tr>
<td>Grade III (Δ plan)</td>
<td>4</td>
<td>14%</td>
</tr>
</tbody>
</table>
Expected Height

Mean height gain: 2.4 cm

Expected height gain: 4.3 cm

% height gain: 79
Conclusions

VEPTR is effective in correcting and maintaining scoliosis with improved thoracic height.

Post-implantation kyphosis a concern.

Complications are similar to other studies.

New classification systems are helpful.
Thank You