C-EOS

Classification for Early-Onset Scoliosis

Michael G. Vitale MD MPH
Co Director, Division of Pediatric Orthopaedics
Chief, Pediatric Spine and Scoliosis Service
Ana Lucia Professor of Orthopaedic Surgery
Children’s Hospital Of New York
Columbia University Medical Center
Development and Initial Validation of a Novel Classification System for Early Onset Scoliosis

Accepted to JBJS 2013
Disclosures

Michael G. Vitale, MD MPH
Columbia University Medical Center

Disclosure: I DO have a financial relationship with a commercial interest.

Royalties: Biomet

Consultant: Stryker, CWSDSG, Biomet

Research Support: OREF, CWSDRF, SRS, POSNA

Divisional Support: OREF

Travel Expenses: CWSDSG, FoxPSDSG

Other: CWSDSG - BOD

POSNA BOD
Improving the Evidence Base in EOS

Development of a Research Infrastructure
Via five parallel efforts

- **Endpoints**: Development/Validation of a Disease-Specific QoL Measure -- EOSQ
- **Equipoise**: Identifying Clinical Equipoise in the Field of EOS
- **Classification-EOS**: Development / Validation of Classification for EOS
- **Complications Classification**: Standardize Way We Define and Report Complications
- **Clinical Trials**: Proximal Anchors: Rib Vs Spine – Retrospective (Prospective Underway)
Purpose of the Classification for EOS (C-EOS)

To classify EOS patients in order to:

1) **Predict** the disease course of individual patients

2) **Prognosticate** and determine beneficiaries of differing treatment modalities

3) **Improve communication** among EOS providers and facilitate research
Key ‘Philosophical’ Aspects of the (C-EOS)

- **Comprehensive**
 Applicable to all EOS pts

- **Practical**
 Utilized in daily practice

- **Prognostic**
 Predictive of course

- **Guide**
 Informs treatment decisions

An EOS ‘One Liner’
Methods: Validation Pathway

Phase 1
Development phase
- Classification proposal
- Pilot agreement studies

Nominal Group Technique: Iterative Surveying and Group Discussion

Phase 2
Reliability and accuracy in clinical setting
- Multicentre agreement study

Reliability Testing

Phase 3
Association with patient outcome(s)
- Clinical studies

Future Work

Iterative Survey & Group Discussion

- **Group Discussion**
 - Proposing Variables
 - POSNA – May 2011

- **Iterative Survey**
 - Assessing Variables
 - May-July 2011

- **Group Discussion**
 - Finalizing Variables
 - ICEOS – November 2011

Iterative input by 24 surgeons
Results of Variable Identification Survey

<table>
<thead>
<tr>
<th>Variable</th>
<th>Not Useful</th>
<th>Useful</th>
<th>Essential</th>
<th>CVR</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>COBB</td>
<td>0</td>
<td>1</td>
<td>14</td>
<td>0.87</td>
<td>29</td>
</tr>
<tr>
<td>ETIOLOGY</td>
<td>0</td>
<td>3</td>
<td>12</td>
<td>0.60</td>
<td>27</td>
</tr>
<tr>
<td>KYPHOSIS</td>
<td>0</td>
<td>4</td>
<td>11</td>
<td>0.47</td>
<td>26</td>
</tr>
<tr>
<td>AGE</td>
<td>5</td>
<td>0</td>
<td>10</td>
<td>0.33</td>
<td>20</td>
</tr>
<tr>
<td>PROGRESSION</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>-0.07</td>
<td>19</td>
</tr>
<tr>
<td>CHEST WALL ABNORMALITIES</td>
<td>2</td>
<td>9</td>
<td>4</td>
<td>-0.47</td>
<td>17</td>
</tr>
<tr>
<td>FLEXIBILITY</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>-0.33</td>
<td>16</td>
</tr>
<tr>
<td>OTHER CO-MORBIDITIES</td>
<td>3</td>
<td>8</td>
<td>4</td>
<td>-0.47</td>
<td>16</td>
</tr>
<tr>
<td>PULMONARY FUNCTION</td>
<td>3</td>
<td>9</td>
<td>3</td>
<td>-0.60</td>
<td>15</td>
</tr>
<tr>
<td>AMBULATORY ABILITY</td>
<td>2</td>
<td>12</td>
<td>1</td>
<td>-0.87</td>
<td>14</td>
</tr>
<tr>
<td>NUTRITIONAL STATUS</td>
<td>5</td>
<td>8</td>
<td>2</td>
<td>-0.73</td>
<td>12</td>
</tr>
<tr>
<td>MENTAL FUNCTION</td>
<td>10</td>
<td>5</td>
<td>0</td>
<td>-1.00</td>
<td>5</td>
</tr>
<tr>
<td>BONE QUALITY</td>
<td>11</td>
<td>4</td>
<td>0</td>
<td>-1.00</td>
<td>4</td>
</tr>
</tbody>
</table>
C-EOS Variables: Etiology

- Challenging variable due to heterogeneous population
- Numerous iterations based on study group feedback

Etiology

- Idiopathic
- HTNM
- LTNM
- Syndromic
- Congenital
C-EOS Variables: Etiology

Congenital/Structural: Curves developing due to a structural abnormality/asymmetry of the spine and/or thoracic cavity (i.e. hemivertebrae, fused ribs, post-thoracotomy, or CDH)

Neuromuscular: Patient with neuromuscular disease (i.e. SMA, Cerebral Palsy, muscular dystrophies, etc.)

Syndromic: Syndromes with known or possible association with scoliosis (including spinal dysraphism)

Idiopathic: No clear causal agent (can include children with a significant co-morbidity that has no defined association with scoliosis)
Cobb Angle: Measurement of major spinal curve in position of most gravity.
C-EOS Variables: Kyphosis

Maximum Total Kyphosis: Between any two levels throughout spine

- (-) <20°
- N: 21-50°
- (+): >50°
C-EOS Variables:
Progression Modifier (Optional)

- **P0:** $< 10^\circ$/yr
- **P1:** 10$^\circ$-20°/yr
- **P2:** $>20^\circ$/yr

Minimum of 6 months x-ray follow-up

$$\frac{[\text{Cobb at } t_2] - [\text{Cobb at } t_1]}{[\text{Months between } t_1 \text{ and } t_2]} \times 12 \text{ months/year}$$
Etiology (In order of priority):
- **Congenital/Structural:** Curves developing due to a structural abnormality/asymmetry of the spine and/or thoracic cavity; includes hemivertebrae, fused ribs, post-thoracotomy, or CDH.
- **Neuromuscular:** Pts with neuromuscular disease
- **Syndromic:** Syndromes with known or possible association with scoliosis (including spinal dysraphism)
- **Idiopathic:** No clear causal agent (can include children with a significant co-morbidity that has no defined association with scoliosis)

Cobb Angle (Major Curve):
1: \(<20^\circ\)
2: 21-50°
3: 51-90°
4: \(\geq 90^\circ\)

Maximum Total Kyphosis:
- \((-\): <20°
- \((-\): >20°
- \(+\): >50°

Progression Modifier (optional):
- P0: \(<10^\circ/yr\)
- P1: 10-20°/yr
- P2: >20°/yr

Cobb Angle: Measurement of major spinal curve in position of most gravity

Maximum Total Kyphosis: between any 2 levels

Annual Progression Ratio Modifier (optional):

Progression per year;
min. 6 months between observation

\[
\frac{(Cobb @ t_2) - (Cobb @ t_1)}{[t_2-t_1]} \times 12 \text{ months}
\]
CASE 1

History:
- 19 mo old female
- 38wk, C-section
- L thoracotomy for PDA repair @ 4 mo, scoliosis noted post-op
- Acquired rib fusion b/w concave 4th-5th rib

Physical:
- Hypotonic UE and trunk, hypertonic LE
- Rigid right thoracic curve

C7-T6 = 24º

9 months later

Post-PDA surgery
CASE 1: 9 months later

1. Etiology
 • Acquired chest wall deformity → Congenital/structural

2. Cobb Angle
 • 42º → 2

3. Kyphosis
 • Lateral x-ray reveals 35º maximum total kyphosis → N

4. Progression Modifier (optional)
 • \[\frac{(42^\circ - 24^\circ)}{9 \text{ mo.}}\] x 12 = 24º/yr → P2

C/2/N/P2
CASE 2

History
• 4 y/o girl w/ Congenital Myotonic Dystrophy
 • Mother as well

Physical
• Hyperkyphosis
• Bilateral equinus s/p percutaneous heel lengthening
 – 30° of dorsiflexion
• Full ROM at knees and hips
CASE 2

C7-L4 = 50°

1. Etiology
 • Congenital? Neuromuscular?
 Syndromic?

 • Cobb Angle
 • 50° → 2

1. Kyphosis
 • 96° → +

2. Progression Modifier (optional)
 • Not available

N/2/+
CASE 3

<table>
<thead>
<tr>
<th>History</th>
<th>Physical</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 4 y/o girl w/ Pena-Shokeir Syndrome</td>
<td>• Lays comfortably on table</td>
</tr>
<tr>
<td>• Developmentally delayed</td>
<td>• Stiff left thoracolumbar curvature</td>
</tr>
<tr>
<td>• Right hip dislocation</td>
<td>• Rib cage rests on pelvis</td>
</tr>
<tr>
<td>• Nonambulatory</td>
<td>• Multiple contractures</td>
</tr>
<tr>
<td>• Wheelchair</td>
<td></td>
</tr>
</tbody>
</table>
CASE 3

T9-L4 = 88°

7 months later

Coronal Cobb = 97°

Kyphosis = 26°

Etiology
- Congenital/Structural
- Neuromuscular
- Syndromic
- Idiopathic

Cobb Angle (Major Curve)
1: <20°
2: 21-50°
3: 51-90°
4: >90°

Maximum Total Kyphosis
- N: 21-50°
- (+): >50°

Progression Modifier (optional)
P0: <10°/yr
P1: 10°-20°/yr
P2: >20°/yr
1. Etiology
 • Pena-Shokier Syndrome
 Syndromic

2. Cobb Angle
 • $97^\circ \rightarrow 4$

3. Kyphosis
 • $26^\circ \rightarrow N$

4. Progression Modifier (optional)
 • $[\frac{(97^\circ - 88^\circ)}{(7 \text{ mo.})}] \times 12 = 15.4^\circ/\text{yr} \rightarrow P1$

S/4/N/P1
Methods: Validation Pathway

Phase 1
Development phase
- Interviews, Literature Review, and Working Session
 - Classification proposal
 - Pilot agreement studies
 - Nominal Group Technique: Iterative Surveying and Group Discussion

Phase 2
Reliability and accuracy in clinical setting
- Multicentre agreement study

Phase 3
Association with patient outcome(s)
- Clinical studies
- Future Work

Reliability Testing

Purpose: To assess C-EOS’ ability to prognosticate outcomes in a clinical setting

Hypothesis: Timing to VEPTR fixation failure will differ among C-EOS classes
Methods

Design:
- Retrospective review of prospectively enrolled patients
 - Sourced from a national registry, Chest Wall Spinal Deformity Study Group (CWSDSG)

Participants: Enrollees of the CWSDSG from 2005-2011
- Inclusion
 - EOS diagnosis
 - >2 yrs follow-up
 - VEPTR surgery patients
 - Experienced VEPTR proximal fixation failure
Endpoints:

- Time (months) to VEPTR proximal fixation failure

 • *Definition*: Radiographic diagnosis of failure by an EOS surgeon requiring operative revision of the rib cradle

Inclusion:

- Of 446 VEPTR patients with adequate follow up,
- 105 with proximal fixation failure

Statistical Analysis:

- Analysis of Variance (ANOVA) for solitary C-EOS variables
- Kaplan-Meier Survivorship Analysis by C-EOS classes w n>3
Neuromuscular Pts Exhibit Rapid Failure

ANOVA
- NM vs. Idiopathic
 \(p = 0.026 \)
- NM vs. Congenital
 \(p < 0.001 \)
C-EOS Stratifies Low, Medium, and High Risk

Time to VEPTR Anchor Failure

Classes with n>3 variables:
- C3-
- C3N
- C3+
- N3+
- N3N
- N4N
- N4+

Time to Failure in Months

Survival
Medium Risk of Failure by C-EOS

Medium Risk:
- Congenital/51-90° / Norm & Hyper-kyphosis
 - C3N, C3+
- Neuromuscular / 51-90° / hyperkyphosis
 - N3+
High Risk of Failure by C-EOS

High Risk:
- Neuromuscular / Curve 51-90° & >90° / Norm & hyperkyphosis
 - N3N, N4N, N4+
Conclusions

1. C-EOS able to stratify risk of rapid VEPTR anchor failure
 • Supports validity of C-EOS instrument
 • Potential for use in clinical setting

2. Neuromuscular etiology and curves > 90° as individual variables at high risk of rapid anchor failure

3. With further study, C-EOS may guide treatment decisions and inform providers
C-EOS applied to min. 5 Yr follow up pts:

• **Purpose:** Apply C-EOS to identify trends

• **Methods:**
 – Retrospective review of CWSDSG & GSSG database
 – Min 5 year follow-up

• **Endpoints:**
 – Complications
 – Change in coronal and sagittal curve over time

• **Status:** Pending data collection from CWSDSG and GSSG Registry
Thank You

Michael G. Vitale, MD MPH

mgv1@columbia.edu