What Every Surgeon Needs To Know About Pulmonary Issues in EOS

Gregory J. Redding, MD
Chief, Pulmonary and Sleep Medicine
Seattle Children’s Hospital
University of Washington School of Medicine
Disclosures

Editor for Pediatric Pulmonary section of UpToDate.
Pulmonary Features of Early Onset Scoliosis

- Low Lung Volumes*
- Chest Wall Distensibility and Excursion
- Respiratory Muscle Force and Movement

Hypoxemia
- Poor sleep
- Cor pulmonale

- Work Tachypnea
- + Poor Growth
- ↓ Exercise Tolerance
- Respiratory Failure

Poor Growth

Exercise Tolerance

Respiratory Failure
General Principles of Care

- Progressive deformity leads to decline in respiratory function.
- Current surgical interventions preserve but do not restore lung function.
- Early intervention (surgical vs non-surgical) to prevent deformity will likely improve potential for lung development and growth.
More Principles

- Age at fusion impairs further growth of the thorax, and hence lung function.
- Lung function declines as adults age.
- Pulmonary status (and loss of reserve) will likely influence life span and quality of life.
Pulmonary Epochs of Care for Thoracic Insufficiency Syndrome

Pre-operative Era…..
(includes non-surgical options, e.g. casting)

- Initial Respiratory Severity Assessment
- Diagnosis of Co-morbidities
- Provision of Resp. supportive care
- Monitor Progression of Respiratory status
- Philosophy of Care Pre-surgical Rx
Pulmonary Epochs of Care (con’t)

Operative Era.....
- Assess changes after surgery
- Assess timing of expansions
- Strategize for timing of fusion

Post-Surgical Treatment Era.....
- Provide medical home for chronic pulmonary management
- Arrange transition to adult care
Two Lung Volumes: FVC and RV in EOS

- **Forced Vital Capacity (FVC)** reflects:
 - Intrathoracic Volume
 - Chest Wall Mobility
 - Resp. muscle function

- **Residual Volume (RV)** reflects:
 - Gas Reservoir left after complete exhalation

- **FVC**
 - 62 ± 4%
 - N=53
 - TIS-pre-op

- **RV**
 - 77 ± 12%
 - TLC

Effects of EOS on Breathing During Sleep

AHI

Nadir SaO₂

Un-Treated

Treated

NL
Lung Volumes Before and 6 Months After Device Implantation*

- **Normal**
 - TLC
 - FRC
 - RV
 - RV
 - FVC: 77 ± 12%

- **TIS-pre-op**
 - RV
 - FVC: 62 ± 4%

- **TIS-post-op**
 - RV*
 - FVC: 54 ± 3%
 - RV*: 96 ± 16%

- n=53

* n=12
Increase in FVC After VEPTR Use: Effect of Age

<table>
<thead>
<tr>
<th>Age at Surgery</th>
<th>N</th>
<th>Increase in FVC per year*</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 6 years</td>
<td>16</td>
<td>14.7 +/- 8.5%</td>
</tr>
<tr>
<td>> 6.5 years</td>
<td>7</td>
<td>6.5 +/- 5.5%</td>
</tr>
</tbody>
</table>

*in absolute liters of lung volume

Pre vs Post-op Vital Capacity after Spine Fusion for AIS

N=254
Chest Wall Compliance Declines With Age in Normal Children

Chest wall compliance falls by 30% from 5 to 16 years of age.

Effects of deformity and immobility over years?

Rotation Before and After Growing Rod Insertion

Chest Wall Compliance in Children with EOS

• Chest wall compliance is reduced:
 • With post-natal age
 • With progressive chest wall and spine deformity
 • With combined metal implants in the chest and spine?
Inspiratory Respiratory Muscle Disorders

- Weakness
- Fatigability
- Position
- Excursion
- Scoliosis

Reduced Respiratory Muscle Strength in EOS and AIS

Reduced Intercostal Motion → Diaphragm Dependence

Reduced Diaphragm Excursion → Reduced Vital Capacity

Overall Respiratory Effects* of Current Treatments of EOS

• Lung and Intrathoracic volumes +
• Chest Wall Compliance -
• Respiratory Muscle functions no change

*Most effects unstudied to date for different treatments
Pulmonary Responses to Surgical Treatment of EOS by Lung Volumes

Vital Capacity + Residual Volume = Total Lung Capacity
What are the Pulmonary Targets for “Good” Outcomes?

- American Thoracic Society definition of “disability” in adults:

 Moderate impairment:
 - Impairment sufficient to diminish ability to perform normal jobs: FVC = 50-59% predicted
 - Mild impairment: FVC = 60-79% predicted

Summary

• Current surgical treatments increase lung volumes enough to almost keep up with somatic growth.

• Early non-surgical interventions that also reduce rotation may preserve lung function better than surgical distraction alone.

• New multi-disciplinary approaches are needed to recover lung function already lost due to scoliosis.