Analyzing Early Onset Scoliosis in 3D: How Does Growing Rod Surgery Affect the Three Planes of Deformity?

Burt Yaszay, MD
Fredrick G. Reighard, MPH
Christine L. Farnsworth, MS
Joshua D. Doan, MEng
Jeff Pawelek, BS
Gregory M. Mundis, MD
Behrooz Akbarnia, MD

Research support received from the Children’s Spine Foundation and Rady Children’s Division of Orthopedics
Introduction

• Early onset scoliosis research has been limited to 2D analyses to assess 3D deformity

• Now, technology exists to evaluate how growing rod (GR) techniques more truly affect spinal contour

• Purpose: to perform 3D radiographic analysis of patients with early onset scoliosis treated with GR surgery
Methods

Study cohort:

• Diagnosis of early onset scoliosis
• Age ≤ 10 years at pre-operative evaluation
• Upright simultaneous biplanar radiographs (EOS Imaging, Paris, France)
• Surgery for GR placement
Methods

Study cohort (cont.):

- Following growing rod, patients had biplanar imaging for the duration of their treatment through
 - last follow-up appointment
 or
 - Time of final fusion
Methods

3D Methods:

- **Vertebral reconstructions using sterEOS® software** (EOS Imaging, Paris, France) were imported into MATLAB (Mathworks, Natick, MA)

- **Kyphosis of each vertebra:** angle between bounding endplate normals when projected into the sagittal plane

- **Cobb of each vertebra:** angle between bounding endplate normals when projected into the coronal plane
Methods

3D Methods (cont.):

• Kyphosis and Cobb were measured in:

 1) global spinal coordinate system
 2) local vertebral coordinate systems (vertebrae derotated)

 – Local Cobb angles were summed over the primary thoracic curve
 – Sagittal measurements were summed from T1 to T12 and T12 to S1
Results

• 6 patients met inclusion criteria:
 – 4 female, 2 male
 – Mean age at initial GR surgery 7.1 ± 2.9 years
 (range 3.3 to 10 years)
 – Etiologies:
 • Idiopathic (1 / 6)
 • Congenital (2 / 6)
 • Syndromic (1 / 6)
 • Chiari (2 / 6)
Results

- 3 patients had EOS imaging prior to initial surgery
- 3 patients had post-fusion imaging
- All patients had a minimum of 17-month follow up after initial surgery
Results

<table>
<thead>
<tr>
<th></th>
<th>Global Thoracic Cobb (°)</th>
<th>Local Thoracic Cobb (°)</th>
<th>Global TI-12 Kyphosis (°)</th>
<th>Local TI-12 Kyphosis (°)</th>
<th>Global T12-S1 Lordosis (°)</th>
<th>Local T12-S1 Lordosis (°)</th>
<th>Apical Thoracic Vertebra Axial Rotation (°)</th>
<th>Maximum Single Vertebra Axial Rotation (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-op (n=3)</td>
<td>68±35</td>
<td>77±38</td>
<td>53±21</td>
<td>29±28</td>
<td>57±22</td>
<td>57±19</td>
<td>22±10</td>
<td>28±12</td>
</tr>
<tr>
<td>Post-op (n=6)</td>
<td>54±26</td>
<td>57±27</td>
<td>47±18</td>
<td>31±29</td>
<td>53±11</td>
<td>56±9</td>
<td>19±13</td>
<td>24±9</td>
</tr>
<tr>
<td>Last Follow-up (n=6)</td>
<td>60±23</td>
<td>63±24</td>
<td>49±25</td>
<td>27±30</td>
<td>54±28</td>
<td>59±22</td>
<td>26±10</td>
<td>27±9</td>
</tr>
<tr>
<td>Following Fusion (n=3)</td>
<td>25±7</td>
<td>29±9</td>
<td>57±11</td>
<td>48±11</td>
<td>67±36</td>
<td>68±37</td>
<td>19±9</td>
<td>23±11</td>
</tr>
</tbody>
</table>

Last Follow-up includes the last images available of ongoing GR treatment or the last images before final fusion surgery.

Cobb and rotation are absolute values. Values are average ± std dev.
Conclusions

• As seen in 2D, there was an improvement in coronal correction following placement of GR with some gradual loss during lengthening
• Further curve correction was seen following final fusion
• In the sagittal plane, there did not appear to be any change in either thoracic kyphosis or lumbar lordosis between pre-op, immediate post-op and last follow-up
Conclusions

• Local kyphosis (each vertebral unit is derotated) demonstrated less kyphosis than that on a global sagittal x-ray suggesting a relative hypokyphosing effect of the deformity on the thoracic spine

• Worsening apical rotation was seen between pre-op and last follow-up suggesting a possible crankshaft phenomenon with GR
Acknowledgements

The authors would like to thank EOS Imaging for permission to use figures (slide 4).

Research support received from the Children’s Spine Foundation and Rady Children’s Division of Orthopedics.