Proof Of Concept Validation of a Self Actuated Natural Growth Driven Growing Rod Technology for EOS

Aditya Ingalhalikar¹, PhD, Sajan Hegde², MS, Dilip Sengupta³, MD, PhD, Manali Kunte¹, BE, Sagar Sathaye¹, MS, Suken A. Shah⁴, MD

1. Indius Medical Technologies, Pune, India 2. Apollo Hospitals, Chennai, India, 3. Center for Scoliosis and Advanced Spine Center, Mansfield, TX, USA, 4. Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE, USA
Clinical Problem: Early Onset Scoliosis

EOS Definition

- S shaped spinal deformity affecting children in age group 1 - 9 years.

EOS Symptoms

- Reduction in thoracic cavity space
- Severely compromised lung growth and function and consequently Quality of Life.
- Increased risk of early death due to lung and heart disease.
- Strong psychologically painful effect on the children as well as parents.

Fig 1: Standing X-Ray of a 4 year old suffering from EOS
Goal of the Technology

- Improve Quality of Life by reducing / eliminating repeat lengthening.
- Reduce complications associated with surgical lengthening.
- Eliminate or reduce tissue necrosis.
- Reduce skin infections and implant protrusion.
- Reduce rod breakage.
- Enable increased access of technology to all patients due to cost efficient pricing.
Testing

Assembly Hydraulic Testing

- Rod – Cylinder arrangement was connected to a hydraulic power pack and pressurized up to twice the working pressure
- The test was conducted to ensure that the system is leak-proof and can sustain higher loads than those intended.

Fig 3: Schematic of Assembly Used for Testing

Fig 4: Hydraulic Testing of the Assembly: Load Graphs
Simulated Hydraulic Testing
When connected to the growing rod, the PCD gives gradual distraction & holds the distraction force till the test setup (simulated spine) further expands to simulate natural growth thus making the process a quasistatic one.

Fig 5: Hydraulic Testing of the Assembly
Testing

Mechanical Testing

Successfully tested the Growing Rod system in a modified F1717 construct. Yield load observed was 5 times the load acting on an adult lumbar spine, which is substantially higher force than predicate testing of standard Pedicle Screw Rod construct.

Fig 6: Mechanical Testing of the Assembly
Technology Value Addition

<table>
<thead>
<tr>
<th>CONSIDERATIONS</th>
<th>SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoid / Eliminate invasive externally controlled distraction</td>
<td>Natural – Growth Driven, Self-Actuating Quasi-static distraction of the system</td>
</tr>
<tr>
<td>Continuous Active Distraction Force</td>
<td>Staged PCDs which supply increasing force as growth occurs</td>
</tr>
<tr>
<td>Prevent implant protrusion and thus subsequent skin infection</td>
<td>Sub – muscular implantation</td>
</tr>
<tr>
<td>Prevent metallosis and thus tissue necrosis</td>
<td>Ensure no metal-on-metal wear interface and contain any debris within the system through seals</td>
</tr>
<tr>
<td>Efficient Healthcare Economics</td>
<td>Reduce / eliminate multiple invasive procedures</td>
</tr>
</tbody>
</table>

Fig 7: Implantation on a Scoliotic Sawbone Model
INDIUS Patent Portfolio (Patents Pending)

1. USPTO Application
2. PCT International Application
3. INDIA Application
Future Plan

- Proof of Concept to DFM (Design For Manufacturability)

- Any design modifications based on Laboratory Testing

- Preclinical Testing:
 - Mechanical Testing
 - Animal Studies
 - Biocompatibility Studies
THANK YOU!

Contact Details
Aditya Ingalhalikar, PhD
Founder & CEO
Email: iaditya@indiusmedical.com
Phone: +91 839-087-3873

INDIA Office
Unit No. 12,
Electronic Co – op Estate,
Pune-Satara Road, Pune
MH, India – 411009

US Office
160, Greentree Drive – Suite 101,
Dover, DE 19904,
Kent County, USA