Debate:
Growth Guidance in EOS

Scott J. Luhmann, M.D.

Washington University School of Medicine
St. Louis, Missouri, USA
Chief of Staff, Shriners Hospital for Children

ICEOS Annual Meeting
Lisbon, Portugal
November 15, 2018
Disclosures

• Speaker’s Bureau
 – Medtronic
 – Stryker Spine
 – Orthopaediatrics

• Consultant
 – Medtronic
 – Stryker Spine
 – Orthopaediatrics
 – Wishbone Medical

• Royalties
 – Wolters Kluwer
 – Globus
 – Medtronic
 – Stryker Spine
(Growth Guidance)

← Right Way
Wrong Way →

(Distraction-based)
Need a variety of tools in the toolbox for optimal EOS management
Goals of EOS treatment

- Maximal T1-T12, T1-S1 distance
- Permit radial expansion of the ribs/chest
- Minimize 3D spinal deformity
- Maximize spinal motion and function
- Fewest # of anesthetic episodes possible
- Low complication rate
- Fewest number of outpatient care episodes
- Minimize pain and psychological stress
- Low imaging radiation exposure
- Minimize cost
18 in each group

Matched by age, preoperative curve magnitude and diagnosis
• Overall mean number surgeries
 – GGS 3.1
 – TGR 9.3 (5.8 lengthenings)
• Curve correction: =
• T1-T12 “growth” and final height: =
• T1-S1 “growth” and final height: =
• Complications: =
What are some of the other advantages of Growth Guidance over Distraction-based constructs?

• Low reoperation rate
 – No “scheduled” GGS surgeries
 – GGS << TGR but = to MCGR?
• Infrequent outpatient care episodes: 6-12 m
• Low imaging radiation exposure
• Fewer surgeries + Fewer outpatient care episodes = less pain and psychological stress?
Cost analysis of a growth guidance system compared with traditional and magnetically controlled growing rods for early-onset scoliosis: a US-based integrated health care delivery system perspective.

Luhmann SJ, McAughey EM, Ackerman SJ, Bumpass DB, McCarthy RE.
Cost analysis of a growth guidance system compared with traditional and magnetically controlled growing rods for early-onset scoliosis: a US-based integrated health care delivery system perspective.

Luhmann SJ, McAughey EM, Ackerman SJ, Bumpass DB, McCarthy RE.

6-year episode of care thru definitive PSF
GGS = Distraction-based

- Radial expansion of chest (?
able impact of rib-based fixation)
- Spinal motion: fusion length and implant removals
- 3D spinal deformity: GGS controlled apical derotation and fusion
- Metal debris
9.5 y/o male, JIS
3 years s/p GGS procedure
T3-L3

3 level apical fusion
Blockers
Goals of EOS treatment

<table>
<thead>
<tr>
<th>TGR</th>
<th>MC GR</th>
<th>GGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>=</td>
<td>=</td>
<td>=</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>?</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>=</td>
<td>=</td>
<td>=</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>=</td>
<td>=</td>
<td>=</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>?</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

- Maximal T1-T12, T1-S1 distance
- Permit radial expansion of the ribs/chest
- Minimize 3D spinal deformity
- Maximize spinal motion and function
- Fewest # of anesthetic episodes possible
- Low complication rate
- Fewest number of outpatient care episodes
- Minimize pain and psychological stress
- Low imaging radiation exposure
- Minimize cost
Conclusion

When GGS is an option:

Similar T1-T12 and T1-S1 growth & height

Similar coronal deformity correction

Surgeries: <TGR, =MCGR?

Lower healthcare costs

Lesser impact on child and caregivers
Thank you