Metatropic dysplasia (MTD)

Ilkka J. Helenius, MD, PhD,
Professor of Paediatric Orthopaedic Surgery
University of Turku and Turku University Hospital, Finland
Disclosures

Ilkka Helenius: Consultant for Medtronic; Grants and research funding from Medtronic, Baxter International, K2M via Innsurge As.
Background

- Metatropic dysplasia (MTD) is a rare spondyloepimetaphyseal dysplasia characterized by a long trunk and short limbs in infancy followed by severe and progressive kyphoscoliosis causing a reversal in proportions during childhood (short trunk and long limbs) and a final short stature in adulthood (Leet et al. JPO 2006)
- Metatropic derived from the Greek word *metatropos*, meaning to change
- Prevalence < 1:1 000 000
- Autosomal dominant or DeNovo mutation
- 88 cases described in the literature (Orpha.net)
• Mutations in the transient receptor potential vanilloid 4 (TRPV4) gene (12q24.1) encoding a polymodal Ca²⁺ permeable ion channel
• Increase in Ca²⁺ in chondrocytes → Disrupted endochondral ossification (Camacho et al. AJMG 2010)
 - Reduced number of hypertrophic chondrocytes
 - Presence of islands of cartilage within the zone of primary mineralization
• Uncoupling of endochondral vs. perichondral (appositional) growth (Boden et al. JBJS 1987)
 - Vertebral body height reduced (Platyspondylia) while circumference maintained

Radiographic features as newborn

- Craniofacial abnormalities: Prominent forehead, midface hypoplasia.
- Short diaphyses with wide metaphyses
- Precocious calcification of hyoid and cricoid cartilage
- Platyspondyly
- Elongation of the coccyx
- Halberd shaped pelvis
- Severe hypoplasia of C1 and odontoid process

Cervical instability (C1/C2)

• Hypoplasia and delayed ossification of C1 and odontoid: 71% (10/14) (Genevieve et al. Am J Med Gen 146A:992–996)

• Occurrence of C1/C2 instability* in MTD: 42% (5/12) (Leet al. JPO 2006)

Leet et al. JPO 2006;26:347-52.
*AAD space > 4 mm (Locke, AJR 1966;97:135-40)
Cervical stenosis

- High prevalence stenosis* in metatropic dysplasia 69% (9/13) already as a child (Leet et al. JPO 2006)
- Levels of stenosis
 - C1/C2: 5 children
 - C3/4: 2 children
 - Diffuse: 1 child
 - Cervical kyphosis: 1 child
- 8 children treated with uninstrumented fusion and 1 instrumented fusion + Halo traction / halo cast (age range 6 mths- 9 yrs)
 - Prolonged respirator: 3 pts
 - Loss of halo, abducens, pressure sore: 1 each

Leet et al. JPO 2006;26:347-52.
*Space available for cord (SAC) < 13 mm (Spiering and Braakman JBJS Br 1982)
Kyphoscoliosis

- Kyphoscoliosis often develops at early childhood resulting into progressive and severe deformity by the age of 18 years if left untreated
- Kyphoscoliosis reported as the main cause of death due to cardiopulmonary compromise (Genevieve et al. Am J Med Gen 146A:992–996)
 - Associated often with thoracic narrowing (49%, 43/88).
- Spinal stenosis and paraparesis as a result of deformity also reported in the literature (Rimoin et al. Clin Orthop 1976;114:70-82; Leet et al. JPO 2006)

MTD Case #1 at 5 months of age

Courtesy of Prof Willy Serlo
MTD Case #1 continued

- Triangular chest wall with early onset scoliosis
- Neurologically intact, but breathing difficulties easily with respiratory infection
- Occipitocervical decompression and C0-C2 fusion with autologous ribs recommended by the author at the age of 6 months, thereafter trial of casting
- Family denied
- Child past away at 10 months for pneumonia
Case #2: C1/C2 instability at 13 yrs
C0-C2 fusion & C1 laminectomy
Developed paraparesis 4 years later:
Treated w T8 VCR

4-yr FU
Conclusions

• Metatropic dysplasia a rare, but potentially lethal skeletal dysplasia
• Upper cervical instability associated with stenosis necessitates urgent decompression and spinal fusion even at young age.
• Platyspondylia often progress rapidly into kyphoscoliosis, which can result into spinal cord compression, spinal stenosis and if left untreated present the main cause death due cardiorespiratory compromise
• Results of treatment for spinal deformity unclear