Early Onset Spinal Deformity: Growing Rods or VEPTR – How to decide?

John B. Emans, MD
Children’s Hospital, Harvard Medical School
Boston, MA 02115
john.emans@childrens.harvard.edu

Disclosures:

• Conflicts of Interest:
 - Helped design VEPTR II
 - Helped design VEPTR II
 - Consultant:
 - Synthes spine
 - Medtronics spine
• Off-Label devices discussed:
 - All pedicle screws in children and growing rods (and staples and tethers) are off-label
 - VEPTR is FDA approved for Thoracic Insufficiency syndrome in growing patients. HDE approval is required

Growing Rods or VEPTR:

• Are they really very different?
 - Both distraction based:
 • Skaggs classification useful:
 • Rib-based distraction
 • Spine-based distraction
 • Combinations
 - Both have same major disadvantage:
 • Repetitive surgical lengthening required
 • Distraction-bases Rx not very good for kyphosis

Growing Rods or VEPTR

• Same treatment goals in early onset deformity:
 - At maturity try to achieve:
 • Maximum
 • Spine length, flexibility
 • Thoracic function (volume, movement)
 • Lung growth
 • Minimum
 • Surgery
 • Complications
 • Hospitalizations, disability

Growing Rods or VEPTR

• The difficult decision is when to intervene surgically?
 - Use evolution of chest deformity as a guide to timing of first surgery?
 - Rationale:
 • Surgical intervention can usually correct/control worsened spine deformity.
 • Surgical intervention less effective for established chest deformity
 - The dilemma:
 • Don’t wait to intervene – the chest deformity may be too severe to reverse
 • Don’t intervene too early – may get spontaneous fusion beneath growing rods after 7 years causing early termination of growth-friendly treatment.

Things we think we know: (maybe)

• Our EOS operations don’t correct severe or established 3-D chest deformity
 - Goal is therefore not to let severe thoracic deformity occur or progress
 - When is this? How much is too much?
 - Thorax shape more relevant than the Cobb angle
GR or VEPTR for Early onset deformity

- **Factors to consider**, ways to decide
 - **Etiology** of deformity
 - *Spine or chest* dominant or primary
 - Associated:
 - Bone quality
 - Kyphosis
 - Rigidity of deformity
 - Soft tissue coverage
 - Complications of treatment

Growing Rods or VEPTR

- **Etiology of deformity**
 - Is the *spine the primary deforming force*?
 - Is the *chest wall the primary deforming force*?
 - Are the *chest and spine* both etiologic factors?

Early Onset Deformity. – etiology as a factor:

- **Chest wall is primary problem**
 - Massive rib fusions
 - Other purely thoracogenic scoliosis
 - Chest wall tumors
 - Esophageal atresia,
 - Multiple thoracotomies
 - Some congenital diaphragmatic hernias
 - **Expansion thoracostomy, VEPTR best choice**
 - ‘Spine-only’ treatment will be defeated by chest wall tether
- Thoracogenic scoliosis may need skin expanders, staged procedures, flaps,

GR or VEPTR - VEPTR and **expansion thoracostomy** for rib fusions and congenital scoliosis

- **GR or VEPTR?**
 - Thoracogenic Scoliosis after chest wall tumor

Spine and Chest are both etiologies

- Spine and chest wall *both etiologic factors*
 - Rib fusions with congenital scoliosis
 - **Expansion thoracostomy with VEPTR** or expansion thoracostomy with GR best choices
 - **Established, severe chest wall deformity plus severe spine deformity**
 - Severe windswept thorax
 - GR approaches primary spine problem
 - Is VEPTR any better?
GR or VEPTR Spine and chest are both etiologies

- 2 y.o with progressive curve, increasing nighttime O2 requirement
- Multiple unilateral rib fusions
- Vertebral bars
- Note worsening ‘normal’ hemithorax

GR or VEPTR Spine and chest are both etiologies

- Early intervention for the sake of chest shape
 - Three thoracostomies
 - VEPTR
 - ‘normal’ side of chest improving slowly?

Age 11, PFT’s 45%

- Partial control of spine deformity, chest deformity

GR or VEPTR Spine and chest are both etiologies

Example: progression after in situ fusion

- Fusion at Age 6 months
- Curve Progression at Age 16 months

GR or VEPTR Spine and chest are both etiologies

Age 2 – s/p in situ fusion age 6 mos

- Curve Progression at Age 2 years

GR or VEPTR Spine and chest are both etiologies

- Two rib osteotomies
- One rib-to-rib device
- One rib-to-spine device

Curve Progression at Age 16 months

- VEPTR, expansion thoracostomy, prior fusion

- Age 2 years
Spine growth – 4 yrs after first VEPTR

- Continued growth - 6 lengthenings
- One device exchanged for growth

Age 13 – two years post menarchal - 11 years after first VEPTR

- PFT’s 55%
- Devices left in place.
- Thorax far from normal
- No fusion needed?

GR or VEPTR – Chest and Spine both a problem

- 3yo with progressive thoracic deformity
 - Congenital rib fusions
 - Multiple vertebral anomalies.
- VEPTR and expansion thoracostomies age 3

GR or VEPTR – Chest and Spine both a problem

- Multiple lengthenings
- Exchange x 2
- Age 14, mature
- Unhappy with waist asymmetry
- Active as cheerleader
- VEPTR removal, osteotomies, final fusion

GR or VEPTR – Chest and Spine both a problem

- Final spine fusion easier with VEPTR?
- Rib fusions, scarring expected
- Spontaneous spine fusions:
 - Below rod at lower end
 - In normally segmented part of curve
- Far from easy after VEPTR

GR or VEPTR – Spine is the problem

- Infantile idiopathic scoliosis (normal segmentation)
 - Moderately severe deformity
 - (Spine still worse than chest deformity)
 - Dual Growing rods
 - Rationale for choice:
 - Chest wall, although deformed, is mobile.
 - Expansion thoracostomy, VEPTR, may stiffen chest wall?
Infantile idiopathic scoliosis, moderately severe rotational chest deformity – Age 5

Infantile Idiopathic Scoliosis, dual growing rods – earlier would have been preferable? – Age 5

Age 12, after 7 years of lengthening, stopped by spontaneous fusion. Osteotomies, definitive fusion

GR or VEPTR? Infantile idiopathic Age 3, age 4 in brace, age 5 after casting

GR or VEPTR? More casting, bracing – Age 7, Age 9

GR or VEPTR – IIScasted until age 9
Preop Windswept chest. Note severe thoracic lordosis
GR or VEPTR? - Infantile idiopathic, Age 9

Windswept Chest

IIS - VEPTR first stage

VEPTR fixation lost. GR inserted. Spine under control, chest irrevocably altered.

After 3 years lengthening, Age 12. FEV1 65% Chest still windswept

GR or VEPTR? - Infantile idiopathic, Age 9

Growing Rods or VEPTR
Neuromuscular deformity – VEPTR or GR?

- High-tone (‘CP’)
 - Neither very good. Rarely indicated in ‘CP’ high tone
 - Personal opinion – more trouble with rib drifting in ‘CP’

Growing Rods or VEPTR
Neuromuscular deformity – VEPTR or GR?

- Low-tone SMA, arthrogryposis, myopathy
 - VEPTR directly treats the ‘parasol’ deformity
 - Multiple fixation points – tandem connectors
 - Xrays better with VEPTR, but are the patients any better?
 - Minimal chest wall movement – breathing is all diaphragmatic, hence GR may be as good as VEPTR!

GR or VEPTR?
5 yo with SMA trach but not vent dependent
GR or VEPTR?
SMA ages 5, 10, 12

GR or VEPTR – usefulness of tandem VEPTR II anchors to horizontalize parasol deformity?

GR or VEPTR - *Myelodysplasia* with collapsing kyphosis or scoliosis

- Age 5, thoracic level.
- Worsening deformity, impending skin breakdown

GR or VEPTR - *Myelodysplasia* with collapsing kyphosis or scoliosis

- VEPTR II rib to pelvis.
 - Better able to maintain distraction, deformity control without involving dysplastic lower spine
 - Control of spine without instrumentation of spine
 - Tandem rib connectors useful.
 - Distribution of force
 - Resistant to pull out

GR or VEPTR in Infection

- Infection – VEPTR or GR?
 - Either is a good rescue for infection in the other!
 - Soft tissues a critical component

- Implant removal/retention with deep infection?
 - Depends upon
 - Extent
 - Duration after index procedure
 - Skin, soft tissues

GR or VEPTR in Infection
Fetal alcohol syndrome Complex congenital vertebral anatomy - age 6
GR or VEPTR in Infection
Fetal alcohol syndrome – long segment of spine

GR or VEPTR in Infection
Fetal alcohol syndrome

GR or VEPTR? – Upper thoracic kyphosis

- Kyphosis (upper thoracic) problematic for both growing rods and VEPTR
 - Multiple factors:
 • Weak paraspinals
 • Junctional stresses above stiff segment
 • GR - Disruption of posterior elements.
 • VEPTR – lack of direct sagittal spine control
 • Both GR and VEPTR – distraction-based

GR or VEPTR? – collapsing deformity, arthrogryposis age 4. Coronal deformity controlled

GR or VEPTR? arthrogryposis – age 4 to 8 – initial control then progressive PJK

VEPTR in arthrogryposis – poor control proximal kyphosis.

- Cervico thoracic junction collapsed further into kyphosis, rotating around VEPTR attachments
- Distraction based systems poor for upper thoracic kyphosis
- GR better than VEPTR?
 - Can extend more proximally with GR
GR or VEPTR for upper thoracic kyphosis? 7 yo with familial dysautonomia

- GR or VEPTR for upper thoracic kyphosis
 - 7 yo with familial dysautonomia age 7, 8, 16

GR or VEPTR for upper thoracic kyphosis
- neither is perfect
- GR has some advantages

- Strategies:
 - Leave some kyphosis
 - Pre-op halo gravity traction may facilitate device insertion by diminishing kyphosis
 - Tendency to recur
 - Growing rods can extend more cephalad than VEPTR – ? Past the kyphosis?

- GR preferable:
 - More cephalad extent possible
 - More contouring options
 - Direct control of spine

GR or VEPTR – Bone dysplasias

- Bone dysplasias
 - Spine or ribs better bone for anchor points?
 - Small soft vertebra? – VEPTR may be preferable
 - Spinal stenosis or hypoplastic pedicles? Prior laminectomy? VEPTR may have advantage
 - Beware waiting too long to establish control over curves in spinal stenosis – neurologic risk with progression, correction.

Spondyloepiphyseal dysplasia

- Age 14 mos.
 - C1-C2 fusion
 - Growing rod for scoliosis, kyphosis
- Age 30 months – proximal disengagement
- Age 10 – paraplegia following hip osteotomies, epidural post-op. Slow resolution

SED
Pre-traction

Halo gravity for 7 weeks

Post VEPTR

- Kyphosis well controlled
- One rib sleeve bent to accommodate kyphosis

Early Onset Deformity. – etiology as a factor:

- Bone dysplasias:
 - If upper thoracic kyphosis, GR has an advantage over VEPTR
 - GR can be extended as far cephalad as needed

Campomelic Dysplasia

- Vent dependent
- Rapid progression after 6 months
- Age 18 months – minimal deformity

Age 30 months – severe kyphosis
Age 30 months – severe kyphosis

- Age 30 months – severe kyphosis – stiff
- GR or VEPTR?

- GR enables more cephalad purchase

Age 34 months – growing rods, extending to C7 with sublaminar cable at C7

Age 7 symptomatic spondylolisthesis required extension to pelvis

GR or VEPTR – Osteopenia in Early Onset Deformity

- Osteopenia, poor bone quality
 - VEPTR may have an advantage?
 - ‘more ‘give’ in ribs than spine?
 - Experience with osteogenesis imperfecta?
 - GR allows staged anchor placement

VEPTR or GR? Osteopenia and kyphosis

- 5 yo with recurrent TEF
- Failed VEPTR with severe osteopenia
- Progressive scoliosis
- Rigid upper thoracic kyphosis

VEPTR or GR? Osteopenia and kyphosis:
Insert anchors, 2mos, apply H-G tx, 1 1/2 mos
VEPTR or GR? Osteopenia and kyphosis Age 6, 8

- Worsening deformity
- Recurrent breakdown when attempting to sit or with a brace
- Severe osteopenia, recurrent fractures
- Increasing respiratory distress (secondary TIS)

4 y.o. with Ehlers Danlos variant

GR or VEPTR - complications

- GR – growth stopping complication
 - Lengthening may not be possible indefinitely
- Skaggs and GSSG data:

GR or VEPTR - complications

- Recurrent rib fusion after thoracostomy

GR or VEPTR - complications

- Inadvertent fusion of scapula to ribs:
 - 2 patients with solid fusion of scapula to ribs
 - Numerous with limited scapulothoracic function

GR or VEPTR - Final fusion easier?

- GR and VEPTR:
 - Spontaneous stabilization may have occurred by end of growth
 - No fusion may be needed if:
 - Modest deformity
 - Implants not troublesome
 - Likely underlying fusion
- Conversion to final instrumented fusion?
 - GR challenging conversion
 - Scar, spontaneous fusions, distorted anatomy
 - VEPTR easier conversion?
 - Spine “untouched”?
 - Spine spontaneously fused, esp lower spine anchor area
 - Rib fusions beneath device
VEPTR or Growing Rods?

How to choose between GR and VEPTR:

<table>
<thead>
<tr>
<th></th>
<th>Growing Rods</th>
<th>VEPTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spine growth preservation</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Chest deformity correction</td>
<td>+/-</td>
<td>++</td>
</tr>
<tr>
<td>Ease of use, familiarity</td>
<td>±</td>
<td>±</td>
</tr>
<tr>
<td>Multiple ops</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Final fusion needed</td>
<td>+/-</td>
<td>+/-</td>
</tr>
<tr>
<td>Complication which limits distraction</td>
<td>Fusion underneath rod</td>
<td>Chest wall stiffness, rib re-fusions</td>
</tr>
<tr>
<td>Solution to complication?</td>
<td>Early fusion</td>
<td>Repeat thoracostomy</td>
</tr>
<tr>
<td>Common device problems, failures</td>
<td>Rods break</td>
<td>Rib attachments drift</td>
</tr>
<tr>
<td>Upper thoracic kyphosis</td>
<td>Better</td>
<td>Poor</td>
</tr>
<tr>
<td>Osteopenia</td>
<td>Poor</td>
<td>Poor</td>
</tr>
</tbody>
</table>

Strong indications for VEPTR:

- Primary Chest wall problem
 - Massive rib fusions
 - Thoracogenic scoliosis
- Failed Growing rods
 - Infected spine anchors
- Poor spine anchors
 - Bone dysplasia with spinal stenosis
 - Spina bifida

Strong indications for growing rods

- Primary spine deformity with lesser, flexible chest deformity
- Normally segmented, unscarred chest wall
- High thoracic kyphosis
 - (GR/local fusion can extend into the cervical spine if needed)